Ingénieur-Chercheur et titulaire d’une HDR en Mathématiques Appliquées, Stéphane Del Pino travaille au sein d’une équipe de R&D du CEA dont l’objectif est de développer de nouveaux modèles et de nouvelles méthodes numériques pour les codes de simulation numérique HPC.
Ses principaux thèmes de recherche sont les méthodes de volumes finis et leur utilisation pour l’approximation lagrangienne de la dynamique des gaz ainsi que les méthodes d’adaptation de maillage.
Thèses co-encadrées
-
A. DROUARD, Méthode numérique semi-implicite pour le modèle de l’hyper élasticité, Thèse de doctorat Sorbonne Paris Saclay / CEA, en cours.
-
A. PLESSIER, Schémas implicites semi-Lagrangiens pour la dynamique des gaz compressibles, Thèse de doctorat Sorbonne Université / CEA, 2023.
-
D. YAKOUBI, Analyse et mise en oeuvre de nouveaux algorithmes en méthodes spectrales, Thèse de doctorat CEA/Univ. Pierre et Marie Curie, Paris 6, 2007.
Journal of Computational Physics, Volume 478, 1 April 2023, 2023

abstract
Abstract
In this paper, we propose an adaptive mesh refinement method for 2D multi-material compressible non-viscous flows in semi-Lagrangian coordinates. The mesh adaptation procedure is local and relies on a discrete metric field evaluation. The remapping method is second-order accurate and we prove its stability. We propose a multi-material treatment using two ingredients: the local remeshing is performed in a way that reduces as much as possible the creation of mixed cells and an interface reconstruction method that can be used to avoid the diffusion of the material interfaces. The obtained method is almost Lagrangian and can be implemented in a parallel framework. We provide some numerical tests which attest the validity of the method and its robustness.
ESAIM M2AN Volume 57, Number 2, March-April 2023, 2023

abstract
Abstract
We construct an original framework based on convex analysis to prove the existence and uniqueness of a solution to a class of implicit numerical schemes. We propose an application of this general framework in the case of a new non linear implicit scheme for the 1D Lagrangian gas dynamics equations. We provide numerical illustrations that corroborate our proof of unconditional stability for this non linear implicit scheme.