Post-Image

Emmanuel LABOURASSE

Post-Image Post-Image Post-Image

Research Engineer in numerical simulation and holder of an HDR in applied mathematics, Emmanuel Labourasse develops new models and new numerical methods for the numerical simulation codes. He is interested in hyperbolic and parabolic PDEs for the modelisation of the radiation hydrodynamics and the fluid-structure interaction. He is currently superving three thesis.

A monotone diffusion scheme for 3D general meshes: Application to radiation hydrodynamics in the equilibrium diffusion limit
Pierre Anguill   Xavier Blanc   Emmanuel Labourasse  
Computers & Mathematics with Applications, Volume 158, Pages 56-73, ISSN 0898-1221, 2024

abstract

Abstract

We propose in this article a monotone finite volume diffusion scheme on 3D general meshes for the radiation hydrodynamics. Primary unknowns are averaged value over the cells of the mesh. It requires the evaluation of intermediate unknowns located at the vertices of the mesh. These vertex unknowns are computed using an interpolation method. In a second step, the scheme is made monotone by combining the computed fluxes. It allows to recover monotonicity, while making the scheme nonlinear. This scheme is inserted into a radiation hydrodynamics solver and assessed on radiation shock solutions on deformed meshes.

Arbitrary order monotonic finite-volume schemes for 2D elliptic problems
Xavier Blanc   François Hermeline   Emmanuel Labourasse   Julie Patela  
Journal of Computational Physics, Volume 518, 2024, 113325, ISSN 0021-9991, 2024

abstract

Abstract

Monotonicity is very important in most applications solving elliptic problems. Many schemes preserving positivity has been proposed but are at most second-order convergent. Besides, in general, high-order schemes do not preserve positivity. In the present paper, we propose an arbitrary-order monotonic method for elliptic problems in 2D. We show how to adapt our method to the case of a discontinuous and/or tensorvalued diffusion coefficient, while keeping the order of convergence. We assess the new scheme on several test problems.

Monotonic diamond and DDFV type finite-volume schemes for 2D elliptic problems
Xavier Blanc   François Hermeline   Emmanuel Labourasse   Julie Patela  
Communications in Computational Physics, 2023

abstract

Abstract

The DDFV (Discrete Duality Finite Volume) method is a finite volume scheme mainly dedicated to diffusion problems, with some outstanding properties. This scheme has been found to be one of the most accurate finite volume methods for diffusion problems. In the present paper, we propose a new monotonic extension of DDFV, which can handle discontinuous tensorial diffusion coefficient. Moreover, we compare its performance to a diamond type method with an original interpolation method relying on polynomial reconstructions. Monotonicity is achieved by adapting the method of Gao et al [A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes] to our schemes. Such a technique does not require the positiveness of the secondary unknowns. We show that the two new methods are second-order accurate and are indeed monotonic on some challenging benchmarks as a Fokker-Planck problem.

Arbitrary-order monotonic finite-volume schemes for 1D elliptic problems
Xavier Blanc   François Hermeline   Emmanuel Labourasse   Julie Patela  
Computational & Applied Mathematics, vol 42, 2023

abstract

Abstract

When solving numerically an elliptic problem, it is important in most applications that the scheme used preserves the positivity of the solution. When using finite volume schemes on deformed meshes, the question has been solved rather recently. Such schemes are usually (at most) second-order convergent, and non-linear. On the other hand, many high-order schemes have been proposed that do not ensure positivity of the solution. In this paper, we propose a very high-order monotonic (that is, positivity preserving) numerical method for elliptic problems in 1D. We prove that this method converges to an arbitrary order (under reasonable assumptions on the mesh) and is indeed monotonic. We also show how to handle discontinuous sources or diffusion coefficients, while keeping the order of convergence. We assess the new scheme, on several test problems, with arbitrary (regular, distorted, and random) meshes.

Euler-Lagrange code coupling for blast wave propagation studies.
Teddy Chantrait   Stéphane Del Pino   Emmanuel Labourasse   Stéphane Jaouen  
2023

An asymptotic preserving method for the linear transport equation on general meshes
Pierre Anguill   Patricia Cargo   Cedric Énaux   Philippe Hoch   Emmanuel Labourasse   Gerald Samba  
Journal of Computational Physics, p. 110859, 2022

Contribution to the numerical simulation of radiative hydrodynamics
Emmanuel Labourasse  
Habilitation à Diriger les Recherches en Mathématiques Appliquées, Sorbonne Université, 2021. ⟨tel-03572029⟩, 2022

Surface tension for compressible fluids in ALE framework
T. Corot   P. Hoch   E. Labourasse  
J. Comput. Phys., p. 109247, 2020

A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in Lagrangian frame
E. Labourasse  
Comput. Fluids, p. 372 - 393, 2019

An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction
S. Del Pino   E. Labourasse   G. Morel  
J. Comput. Phys., p. 268 - 301, 2018

A positive scheme for diffusion problems on deformed meshes
Xavier Blanc   Emmanuel Labourasse  
J. Appl. Math. Mech., p. 660-680, 2016

A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D
Silvia Bertoluzza   S. Del Pino   Emmanuel Labourasse  
ESAIM: Math. Model. Numer. Anal., EDP Sciences, p. 187-214, 2016

Angular momentum preserving cell-centered Lagrangian and Eulerian schemes on arbitrary grids
Bruno Després   Emmanuel Labourasse  
J. Comput. Phys., Academic Press, p. 28-54, 2015

A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex hull preservation
P. Hoch   E. Labourasse  
Int. J. Numer. Meth. Fluids, p. 1043-1063, 2014

A one-mesh method for the cell-centered discretization of sliding
G Clair   B Després   E Labourasse  
Comp. Meth. Appl. Mech. Eng., Elsevier, p. 315-333, 2014

A new method to introduce constraints in cell-centered Lagrangian schemes
Guillaume Clair   Bruno Després   Emmanuel Labourasse  
Comp. Meth. Appl. Mech. Eng., Elsevier, p. 56-65, 2013

A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes
A. Claisse   B. Després   E. Labourasse   F. Ledoux  
J. Comput. Phys., p. 4324-4354, 2012

Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy
B. Després   E. Labourasse  
J. Comput. Phys., p. 6559 - 6595, 2012

An antidissipative transport scheme on unstructured meshes for multicomponent flows
Bruno Després   Frédéric Lagoutière   Emmanuel Labourasse   Isabelle Marmajou  
Int. J. Finite Volumes, p. 30-65, 2010

A cell-centered Lagrangian hydrodynamics scheme in arbitrary dimension
G. Carré   S. Del Pino   B. Després   E. Labourasse  
J. Comput. Phys., p. 5160-5183, 2009

Polynomial Least-Square reconstruction for semi-Lagrangian Cell-Centered Hydrodynamic Scheme
G. Carré   S. Del Pino   E. Labourasse   K. Pichon Gostaf   A. V. Shapeev  
ESAIM: Proc., p. 1008-1024, 2009

DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: A priori tests for LES two-phase flow modelling
A. Toutant   E. Labourasse   O. Lebaigue   O. Simonin  
Comput. Fluids, p. 877 - 886, 2008

Towards Large Eddy simulation of isothermal two-phase flows: Governing equations and a priori tests
E. Labourasse   D. Lacanette   A. Toutant   P. Lubin   S. Vincent   O. Lebaigue   J.-P. Caltagirone   P. Sagaut  
Int. J. Multiphase Flow, p. 1 - 39, 2007

Hybrid methods for airframe noise numerical prediction
M. Terracol   E. Manoha   C. Herrero   E. Labourasse   S. Redonnet   P. Sagaut  
Theor. Comput. Fluid Dyn., p. 197-227, 2005

Advance in RANS-LES coupling, a review and an insight on the NLDE approach
E. Labourasse   P. Sagaut  
Arch. Comput. Methods Eng., p. 199-256, 2004

Special section: boundary conditions for Large Eddy Simulation-Turbulent Inflow Conditions for Large-Eddy Simulation of Compressible Wall-Bounded Flows
P. Sagaut   E. Garnier   E. Tromeur   L. Larcheveque   E. Labourasse  
AIAA J., New York, etc. American Institute of Aeronautics; Astronautics., p. 469-477, 2004

Reconstruction of Turbulent Fluctuations Using a Hybrid RANS/LES Approach
E. Labourasse   P. Sagaut  
J. Comput. Phys., p. 301 - 336, 2002

Reconstruction des fluctuations turbulentes par une approche hybride RANS/LES
E. Labourasse  
Thèse de doctorat en Mécanique. Université Pierre et Marie Curie - Paris VI, 2002. ⟨tel-00006002⟩, 2002

Multiscale approaches to unsteady simulation of turbulent flows
P. Sagaut   E. Labourasse   P. Quéméré   M. Terracol  
Int. J. Nonlin. Sci. Num., p. 285-298, 2000