Post-Image

Cédric CHEVALIER

Post-Image Post-Image

Cédric Chevalier works in a CEA team specialized in parallel computing for numerical simulation. His main interests are combinatorial scientific computing and sparse linear algebra.

Main research topics

  Partitioning

Partitioning problems arise notably for load-balancing or ordering. These combinatorial problems are usually solved through numbers, vectors of numbers, graphs, or mesh partitioning.

Two Ph.D. theses have been completed in this area, and a third one is ongoing, producing the software Coupe.

  Linear Algebra

The focus is on sparse linear algebra and iterative methods for solving large linear systems. Works are mainly about implementing and composing linear solvers in the Alien software.

  Performance and numerical accuracy

Les optimisations logicielles et matérielles autour des calculs flottants peuvent changer les résultats. L’étude de ces changements et comment les gérer a donné lieu à une thèse, dont est issu le logiciel Shaman.

Other interests

  High-performance computing

How to efficiently exploit supercomputers is an arduous task. Mini-applications make it possible to understand how to deal with new architectures. Internships help a lot with this activity.

  Programming technics

New programming languages and paradigms promise more robust and efficient codes. Evaluating them for scientific computing is essential. It is done with mini-applications and also specific internships. The Rust language is particularly of interest.

Coupe: A Mesh Partitioning Platform
Cédric Chevalier   Hubert Hirtz   Franck Ledoux   Sébastien Morais  
SIAM International Meshing Roundtable 2023, Springer Nature Switzerland, p. 43-63, 2023

abstract

Abstract

This paper presents Coupe, a mesh partitioning platform. It provides solutions to solve different variants of the mesh partitioning problem, mainly in the context of load-balancing parallel mesh-based applications. From partitioning weights ensuring balance to topological partitioning that minimizes communication metrics through geometric methods, Coupe offers a large panel of algorithms to fit user-specific problems. Coupe exploits shared memory parallelism, is written in Rust, and consists of an open-source library and command line tools. Experimenting with different algorithms and parameters is easy. The code is available on Github.

Coupe: A Modular, Multi-threaded Mesh Partitioning Platform
Hubert Hirtz   Cédric Chevalier   Franck Ledoux   Sébastien Morais  
Euro-Par 2022 International Workshops, Glasgow, UK, August 22–26, 2022, Revised Selected Papers, Glasgow, United Kingdom, 2023

abstract

Abstract

Mesh partitioning used for load balancing in distributed numerical simulations is typically managed with tools that are good enough but not optimal. Their use scope is not explicitly dedicated to load balancing, and they cannot make use of all available information. In this paper, the mesh partitioning problem and the context for its use are precisely defined. Then, existing tools are presented, along with their characteristics and features that are missing. Finally, a new partitioning platform – the subject of my PhD thesis – is presented: its architecture, software engineering choices made along the way, and how it can be the best fit for load balancing distributed simulations. The platform is open-source and is hosted on GitHub: https://github.com/LIHPC-Computational-Geometry/coupe .

Algorithm 1029: Encapsulated Error, a Direct Approach to Evaluate Floating-Point Accuracy
Nestor Demeure   Cédric Chevalier   Christophe Denis   Pierre Dossantos-Uzarralde  
ACM Transactions on Mathematical Software, Volume 48, Issue 4, 2023

abstract

Abstract

Floating-point numbers represent only a subset of real numbers. As such, floating-point arithmetic introduces approximations that can compound and have a significant impact on numerical simulations. We introduce encapsulated error, a new way to estimate the numerical error of an application and provide a reference implementation, the Shaman library. Our method uses dedicated arithmetic over a type that encapsulates both the result the user would have had with the original computation and an approximation of its numerical error. We thus can measure the number of significant digits of any result or intermediate result in a simulation. We show that this approach, although simple, gives results competitive with state-of-the-art methods. It has a smaller overhead, and it is compatible with parallelism, making it suitable for the study of large-scale applications.

Coupe
Hubert Hirtz   Cédric Chevalier   Sébastien Morais   Armand Touminet  
CEA, LIHPC Computational Geometry group, 2022

Evaluation of the Performance Portability Layer of Different Linear Solver Packages with ALIEN, an Open Generic and Extensible Linear Algebra Framework
Jean-Marc Gratien   Cédric Chevalier   Thomas Guignon   Xavier Tunc   Pascal Have   Stéphane De Chaisemartin  
ECCOMAS Congress 2022 - 8th European Congress on Computational Methods in Applied Sciences and Engineering, 2022

Load Balancing with Zoltan and Isorropia
Erik Boman   Doruk Bozdag   Cédric Chevalier   Siva Rajamanickam   Karen Devine   Vitus Leung   Umit Catalyurek   Lee Riesen   Michael Wolf  
2022

Tagged Error: Tracing Numerical Error through Computations
Nestor Demeure   Cédric Chevalier   Christophe Denis   Pierre Dossantos-Uzarralde  
2021 IEEE 28th Symposium on Computer Arithmetic (ARITH), p. 9-16, 2021-06

A Multilevel Mesh Partitioning Algorithm Driven by Memory Constraints
Cédric Chevalier   Franck Ledoux   Sébastien Morais  
2020 Proceedings of the SIAM Workshop on Combinatorial Scientific Computing, p. 85-95, 2020

abstract

Abstract

Running numerical simulations on HPC architectures requires distributing data to be processed over the various available processing units. This task is usually done by partitioning tools, whose primary goal is to balance the workload while minimizing inter-process communication. However, they do not take the memory load and memory capacity of the processing units into account. As this can lead to memory overflow, we propose a new approach to address mesh partitioning by including ghost cells in the memory usage and by considering memory capacity as a strong constraint to abide. We model the problem using a bipartite graph and present a new greedy algorithm that aims at producing a partition according to the memory capacity. This algorithm focuses on memory consumption, and we use it in a multi-level approach to improving the quality of the returned solutions during the refinement phase. The experimental results obtained from our benchmarks show that our approach can yield solutions respecting memory constraints for instances where traditional partitioning tools fail.

Multi-Criteria Graph Partitioning with Scotch
Rémi Barat   Cédric Chevalier   François Pellegrini  
2018 Proceedings of the SIAM Workshop on Combinatorial Scientific Computing (CSC), Society for Industrial and Applied Mathematics, p. 66-75, 2018-01

Partitionnement de maillages sous contrainte mémoire à l'aide de la programmation linéaire en nombres entiers
Eric Angel   Cédric Chevalier   Franck Ledoux   Sébastien Morais   Damien Regnault  
Conférence d'informatique en Parallélisme, Architecture et Système (Compas'2016), 2016

FPT Approximation Algorithm for Scheduling with Memory Constraints
Eric Angel   Cédric Chevalier   Franck Ledoux   Sébastien Morais   Damien Regnault  
Euro-Par 2016: Parallel Processing - 22nd International European Conference on Parallel and Distributed Computing, Grenoble, FR, August 24-26, 2016, Proceedings, p. 196-208, 2016

Balance-Enforced Multi-Level Algorithm for Multi-Criteria Mesh Partitioning
Rémi Barat   Cédric Chevalier   François Pellegrini  
CSC 16, p. 2, 2016

Multi-Constraints Graph Partitioning for Load Balancing of Multi-Physics Simulations
Rémi Barat   Cédric Chevalier   François Pellegrini  
Conférence d'informatique En Parallélisme, Architecture et Système (COMPAS), 2016

Combinatorial Algorithms to Enable Computational Science and Engineering: Work from the CSCAPES Institute
Erik G. Boman   Umit V. Catalyurek   Cedric Chevalier   Karen D. Devine   Assefaw H. Gebremedhin   Paul D. Hovland   Alex Pothen   Sivasankaran Rajamanickam   Ilya Safro   Michael M. Wolf   Min Zhou  
Purdue Univ., West Lafayette, IN (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argonne National Lab. (ANL), Argonne, IL (United States), 2015-01

Algorithme Approché Pour Un Problème de Partitionnement de Maillage Sous Contrainte Mémoire
Sébastien Morais   Eric Angel   Cédric Chevalier   Franck Ledoux   Kim Thang Nguyen   Damien Regnault  
ROADEF - 15ème Congrès Annuel de La Société Française de Recherche Opérationnelle et d'aide à La Décision, Société française de recherche opérationnelle et d'aide à la décision, 2014

Linear Programming for Mesh Partitioning under Memory Constraint : Theoretical Formulations and Experimentations
Sébastien Morais   Eric Angel   Cédric Chevalier   Franck Ledoux   Damien Regnault  
CSC 14, p. 2, 2014

Hypergraph Partitioning
Cédric Chevalier  
Graph Partitioning, John Wiley & Sons, Ltd, p. 65-80, 2013

The Zoltan and Isorropia Parallel Toolkits for Combinatorial Scientific Computing: Partitioning, Ordering and Coloring
Erik G. Boman   Uemit V. Catalyuerek   Cedric Chevalier   Karen D. Devine  
Scientific Programming, Hindawi Ltd, p. 129-150, 2012

Load Balancing for Mesh Based Multi-Physics Simulations in the Arcane Framework
C. Chevalier   G. Grospellier   F. Ledoux   J. C. Weill  
The Eighth International Conference on Engineering Computational Technology, p. 4, 2012

Parallel Partitioning, Coloring, and Ordering for Scientific Computing
E. G. Boman   Ue V. Catalyuerek   C. Chevalier   K. D. Devine  
Parallel Partitioning, Coloring, and Ordering in Scientific Computing, Chapman & Hall/Crc Press, p. 351-371, 2012

Advances in Parallel Partitioning, Load Balancing and Matrix Ordering for Scientific Computing
Erik G. Boman   Umit V. Catalyurek   Cédric Chevalier   Karen D. Devine   Ilya Safro   Michael M. Wolf  
Journal of Physics: Conference Series, p. 12008, 2009-07

Comparison of Coarsening Schemes for Multilevel Graph Partitioning
C. Chevalier   I. Safro  
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), p. 191-205, 2009

Weighted Aggregation for Multi-Level Graph Partitioning
Cedric Chevalier   Ilya Safro  
2009

Getting Started with Zoltan: A Short Tutorial
K. D. Devine   E. G. Boman   L. A. Riesen   U. V. Catalyurek   C. Chevalier  
Proc. of 2009 Dagstuhl Seminar on Combinatorial Scientific Computing, 2009

Improved Parallel Data Partitioning by Nested Dissection with Applications to Information Retrieval.
Michael M. Wolf   Cedric Chevalier   Erik Gunnar Boman  
Proposed for publication in Parallel Computing., Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2008-12

PT-Scotch: A Tool for Efficient Parallel Graph Ordering
C. Chevalier   F. Pellegrini  
Parallel Computing, p. 318-331, 2008

The PT-Scotch Project: Purpose, Algorithms, Intermediate Results
Cédric Chevalier   François Pellegrini  
PPAM 2007 - Seventh International Conference on Parallel Processing and Applied Mathematics, 2007-09

Conception et mise en oeuvre d'outils efficaces pour le partitionnement et la distribution parallèles de problème numériques de très grande taille
Cédric Chevalier  
Université Sciences et Technologies - Bordeaux I, 2007-09

Improvement of the Efficiency of Genetic Algorithms for Scalable Parallel Graph Partitioning in a Multi-level Framework
Cédric Chevalier   François Pellegrini  
Euro-Par 2006 Parallel Processing, Springer, p. 243-252, 2006