Benoît Lelandais holds an MS of Université Paris-Saclay in computer science. It has held several positions in digital services companies, in IFP Energies Nouvelles and at the French Atomic Energy Commission (CEA) in the field of software design and implementation. He is currently working in a team in charge of providing meshing methods and tools for HPC numerical simulation codes.
After numerous works in model-driven engineering, including the development of DSLs for numerical simulation and their software environments to generate efficient code in an HPC context, his main mission today concerns Magix3D, a 3D meshing tool.
SLE '23: 16th ACM SIGPLAN International Conference on Software Language Engineering, 2023
abstract
Abstract
Software languages have pros and cons, and are usually chosen accordingly. In this context, it is common to involve different languages in the development of complex systems, each one specifically tailored for a given concern. However, these languages create de facto silos, and offer little support for interoperability with other languages, be it statically or at runtime. In this paper, we report on our experiment on extracting a relevant behavioral interface from an existing language, and using it to enable interoperability at runtime. In particular, we present a systematic approach to define the behavioral interface and we discuss the expertise required to define it. We illustrate our work on the case study of SciHook, a C++ library enabling the runtime instrumentation of scientific software in Python. We present how the proposed approach, combined with SciHook, enables interoperability between Python and a domain-specific language dedicated to numerical analysis, namely NabLab, and discuss overhead at runtime.
Proceedings of the 14th ACM SIGPLAN International Conference on Software Language Engineering, p. 2-15, 2021
abstract
Abstract
Runtime monitoring and logging are fundamental techniques for analyzing and supervising the behavior of computer programs. However, supporting these techniques for a given language induces significant development costs that can hold language engineers back from providing adequate logging and monitoring tooling for new domain-specific modeling languages. Moreover, runtime monitoring and logging are generally considered as two different techniques: they are thus implemented separately which makes users prone to overlooking their potentially beneficial mutual interactions. We propose a language-agnostic, unifying framework for runtime monitoring and logging and demonstrate how it can be used to define loggers, runtime monitors and combinations of the two, aka. moniloggers. We provide an implementation of the framework that can be used with Java-based executable languages, and evaluate it on 2 implementations of the NabLab interpreter, leveraging in turn the instrumentation facilities offered by Truffle, and those offered by AspectJ.
Proceedings of the 8th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing, Association for Computing Machinery, 2009
abstract
Abstract
In this paper, we introduce the Arcane software development framework for 2D and 3D numerical simulation codes. First, we describe the Arcane core, the mesh management and the parallelism strategy. Then, we focus on the concepts introduced to speed up the development of numerical codes: numerical modules, variables, entry points and services. We explain the execution model and enumerate the available debugging tools. Finally, the main functionalities of Arcane are described through an example. As a conclusion, we present the future works.