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imvAR - Dimensionless 1D kinetic equation

Where:

NOf + VO f = %(p —f) (1)

> f:(t,x,v)— f(t,x,v) is the particle distribution function.

x € [0, 1] is the space variable.
v=1Q- e € [—1,1] is the kinetic variable.

€ is the Knudsen number.

>
>
» o is the scattering coefficient.
>
>

7 is a dimensionless number related to the transport scale.

1 1
The density is p = (f), where (-) = 5/ . dv.
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BMAR - Moments models

-
The moment hierarchy of the kinetic equation given by m = (1 v) is

notp + 0xj = 0,
{ , (2)

. o,
WU+@q:*?

where:
> p = (f) is the density.
» j = (vf) is the current density.
» g = (v?f) is the third moment of the distribution function.

We seek g as a function of (p,j). By imposing the shape of the distribution
function as a function of those variables, this flux can be computed.
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irMAR - M1 model

Let (p,j) be a couple of realizable moments 1. The distribution function 2
which minimizes the entropic functional g(f) = fInf — f under the

constraint <m?> = (p j)T is

s — a+6v: B ﬁv
flv)=e psinhﬁe ’

1
where u = j/p = coth § — 5 Thus, the hyperbolic M1 model is

ndep + Oxj = 0,
. 4
w0+ 0up (1-25 ) =2 “
153 €

! There exists a positive distribution function which realises those moments.
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mvar  Diffusion limit and Asymptotic Preserving (AP) numerical scheme

At the diffusion scale (17 = €), when ¢ tends to 0, the density satisfies a
diffusion equation (parabolic):

Orp = Ox <3100Xp) + O(e). ()

A numerical scheme for the kinetic equation (1) or the M! moment model
(4) needs to preserve the diffusion asymptotic limit. A priori, such a scheme
doesn't ensure this property without special a special treatment of the
source term.

e—0

\

Moment model Diffusion equation

! i

- e—0
Numerical scheme >
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iRMAR A finite volume formulation

The semi-implicit finite volume formulation of the kinetic equation is

-1 — (T — (6)
A T E(¢i+l/2 — ¢i_1/2) = v(p; i
where:
1 Xit1/2

> = —/ f(t", x,v)dx is the mean value of the distribution

Ax Xi—1/2
function in cell / at time t".
tn+1
> Gir1p = ﬁ /tn f(t, Xj+1/2, v)dt is the numerical flux between

cells i and i £ 1.

g . . .
» v = — is the collision frequency.
ne
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mrMAR | JGKS

UGKS rests on the integral solution of the kinetic equation given by the
method of characteristic:
v
f(t, X,'+1/2, V) ~ eiyi+1/2(t7tn)f(tn7 X,-+1/2 — *(t — tn), V)
n

t ) (7)
+ 1/;+1/2/ G_V"“/Z(t_S)P(SaXi+1/2 - g(t —5))ds.
tn
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mrMAR | JGKS

The chosen reconstructions are

p(t,,,X) =

f(tn,x,v) = {

P | Pi+1:/2
/\\/

|
| |
| |
1 1

p(t, x)

n
Pi+1

Xi o Xit1/2  Xi+l
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1

7+ 0x " (x = x)
i1+ 0x

Si X<X,'+]_/2

Pir1j2 + 5>€p?+1/2(x —Xit1/2) X < Xip1/2
p7+1/2 + 55/’7+1/2(X = Xiy1/2) X > Xiy1)2

(8)

(9)

Ti(x = xi+1) s x> Xq170
| |
| To—— '/
| |
fin // 1 f(tn7X> V)
Xi Xig1/2  Xi+l
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mvar UGKS

The numerical flux is
Gir1/2(v) =Av (ﬂn(+)ﬂv>0 + fii(f)ﬂv<0>
+BV2(5Xf;-nﬂv>0 + 5xf;'r-;—1]lv<0)

n (10)
+Cvpii1y
+DV2(5§P7+1/2HV>0 + 55P7+1/2]1v<0)7
where f,-"(i) =f"+ %(&fi” and, using the notation w = —agAt/(ne),
A, B, C,D are:
ABtome) = (¥~ 1) (11)
,O,1,E) = w e
1
C(Ata a,n, 5) = H - A(At7 a, 1, 5) (12)
D(At.m,e) = (C(Atom.6) = AlLone)) + e (13)
g g
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mmar - Asymptotic limits

Free transport limit

In the free transport limit (e — +00), the microscopic flux tends to
2
v _ v
biy12 — Z(f;n(ﬂﬂwo + f,-i(l "1,<0) — At2772(5xfin]lv>o + 0xfi}11v<o),

€E—0Q
(14)
which is the second order in space and time flux for the linear advection
equation.

Diffusion limit
In the diffusion limit (7 = € and ¢ — 0), the macroscopic flux tends to
—1pla —p7
<¢i+1/2> %30 Ax (15)

which is the two point centred scheme for the diffusion equation.
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mvAR M1 closure of UGKS

Key concept: We apply the UGKS to the M* distribution function
reconstructed from (p?, ") at time t,. That means the distribution function
is systematically projected into the M set at each time step.

M1 > +Biv UGKS n
(p';l?jgl) - f:]’ — eﬂl—’_ﬁz I f.i +1
U (m-)
GKS g
(p:r}—f—l‘j?fl-l-l)

Figure: UGKS-M1 scheme structure
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fwiae JGKS-M1

By linearity we can exhibit two finite volume formulations for each
macroscopic quantities

Pt —pp 1
A Ax Ao (Pl =910 =0, (162)
n+1 :
“A;ff" (@, 9 ) = i (16b)
where
1y = AV yno + v o) -
+ B <v25X)A’,-”]lv>o + V25x?;11]lv<0> + ?)ALX(P,I"H - P?)’ )
O = AV Tuso + v 1u0)
+ B (V30 o + VA0 o) + % (FLuso + Fialvco)

(17b)
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A UGKS-M1

Diffusion limit
In the diffusion limit (n = € and ¢ — 0), the macroscopic flux tends to

=1l pf’ — p’.’
P i+1 i
i+1/2 =0 30 Ax ) (18)

which is the two point centred scheme for the diffusion equation.

Second order

The integrals <vk6X1A‘,-"]lV§o> can't be expressed in terms of («, 3) due to
the non-linearity of the slope limiter.
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fwiae JGKS-M1

. T T .
Let U = (p _]) and A = (a B) be the vectors of conservative and
entropic variables. We set

Uln—l-(SUIn(X—X,) IfX <X,'+]_/2

. , (19)
Uy + 00U (x = xiv1)  if x> X410

Us(x) = {

where the slope is §U7 = (U7, — U7)¢(r;), r; is the slope and ¢ is a
TVD slope limiter. We expand #(U?(x)) = exp (A(U?(x)) - m) in Taylor
series: R

Zrn df n n

F(U7) + E(Ui) -0U7 (x — xi)

F(UF) + 3a(U7) T mF (U7) - 6U7 (x — x;),

and finally we set 6,7(U?) = JA(U7)0U7 - mf (U?).

A

F(U7(x))

(20)
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IRMAR
AMAR - Results

Figure: Density in the domain at time t = 0.1,0.4,1.0,1.6 and 4.0.
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Avar Intermediate and diffusion regime

UGKS
09 UGKS-M1 H
HLL

0.7 t=2,0 — [

(%)

Figure: Density in the domain in the intermediate and diffusion regime
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wmar  Non positiveness of UGKS

Almost null function at cell j +1

. 0 if i j+1
17 = 1 —0.5,0/.
7 (v) mlve[ga,%a] elsewhere 7 =l 0l
At _
ol = A (—v ) +0(ar),
At2 2 At2 v

1+ Aw)fi(1) = = (v ) + o),

© Ax 217pf+1/2 Ax n

with p?+1/2 = <1§-9L11LV<0> pﬁl/2 1 and < fJ+1> = a so that

2
AAi( <a — 1) + O(At3).

(1+At)fH(1) = 5

When a < 5 L f becomes negative for At small enough.
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IRMAR

Correction of the reconstruction

Time reconstruction of the interface

P
P \E‘M pi;l/zi(t)
Pi+1/2 1 | gt )
! M‘/ PRL; X
,0,11/2(1?) ‘ Pit1
Xi—1/2  Xi  Xig1/2 Xi+1 Xi43/2X
n— _ n —v(t—tp) ) 1— —v(t—t,)
pi+1/2(t) = pje +p,+1/2( e ),
975:1/2“) = phge ) o piy1/2(1 — e V(t=tn)),

p(t,x)

PP o) + 8pl g p()(x = Xiq1y2) i X < X412
,07:'1/2(1?) + 5fp,f’+1/2(t)(x — Xiy1/2) if X > Xiq1/0
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S
mvar - New flux

Modified UGKS
The new flux ¢ is the following:

Gir1p(v) = ir1ya(v)

2Fit1/2 . P
T)/V(—%P,’H/zloo + 670741 /21v<0)
Git1/2 V2(*5§P7+1/2]1v>0 + 5507+1/2]1v<o)»
1 1—e%
with F(At,n,e,0) = —— {ew—i- € },
n w
1— e
G(At,n,e,0) = —QL [WeW -2 <6W+ € )} )
on w
w = —ZAteR_
en

F and G vanish in both transport and diffusion regimes.

J.Mathiaud | 22/05/2024 The UGK scheme for linear transport | Some numerical analysis | 19/35



mmar - Stability conditions

Realisibility
If o is constant then the new scheme is stable under the condition:
e e +At2F(w>+FC(w>—2“§(XW)7
0 < —w (miin,u(—\BH)A(W) + F(4W) - 2(&)) + ZD(w).

It may imply that once this inequality is satisfied the scheme may also
respect a numerical second principle.
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AR | inear-Fokker-Planck: model

Equation
0O + vOf = ga V(2 = vA)auf), with v € [~c,c] (21)
Diffusive limit
2
Otp + Ox(KOxp) = 0, with kK = e (22)
o
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AR New scheme

Coefficients
The coefficients A,C,D are given by (using the notation w = —20At/(ne)):

1
A(A = (" -1 2
(Btone) = —(e* 1) (23)
1
C(At,o,n,e) = ;—/—\(At,a,n,s) (24)
€ €
D(A = —(C(A — A(A ——e". (2
(At,0,n,¢) 7, (C(At,0,1,€) — A(At, 0,n,€)) 20 (25)
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A . .
®vAR - inear-Fokker-Planck: numerical tests

Result

Figure: Global Figure: Zoom
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The scheme in the electronic transport context
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mvAR The electronic transport equation

atf+%§2.vxf=y(/w[f]— f), (26)

Where:
> f(t,x,v, Q) — f(t,x, v, Q) is the particle distribution function.
x € D, an open set of R?, is the space variable.

>
» v € R, is the velocity and Q € S? is the direction.
>

5/2 . . ..
(W) = £ 277 is the scattering coefficient.

en g3/
14 v : 2q
> M[f]( ) m Xp 7? IS the MaXWe”lan (T = 5)
The conserved variables are
+oo
W = / / %vz f(t, x, v, Q)v2dvdQ.
/2
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®mar  The angular M1 model

The M1 distribution function is f(Q) = e**#?_ The angular M1 moment
model is y
Oefo + =V - f1 = v(Mo[fo] — o)
v , (27)
0:f1 + ;Vx - = —vfy
where:

> fi(t,x,v) = (Q¥F(t,x,v,Q)) = [, Q¥ F(t,x, v,Q)dQ are the
angular moments,

> - (2eal) =g
closed with the M1 distribution function.

T I u) B B s the
s+ (1 3|BH)|IBI®H[3| ' the flux
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’vAR - Diffusion limit

In the diffusion limit (¢ — 0), the macroscopic variables satisfies a
non-linear diffusion system:

2
atp = Vx . <O_qu) + O(E)

3
2 . (28)
0:q = V- (2320% ("p)) +0(e)

J.Mathiaud | 22/05/2024 The scheme in the electronic transport context | The model | 27/35



mrMAR | JGKS

For a uniform Cartesian grid, the finite volume formulation of the kinetic
equation is

ffZ'H — 1 N Giy1/2j — Pi-1/2 N bijr1/2 — Pij-1/2 _
At Ax Ay (29)
V(W) (MW = 57

The integral solution of the kinetic equation

_un _ v
f(t, X,'+1/27j, v, Q) ~ € V"+1/2J(t ) f"(t'n7 Xi+1/2,j - 7(t - t,-,)Q, v, Q)
n
b un o (t—s) v (30)
+ Vﬂ,‘+1/2/t e 2R T MIW(s, X1, — E(t —5)Q, v)ds,
is used to compute the microscopic fluxes using adequate reconstructions of
the distribution function and of the Maxwellian.
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mvar UGKS

The microscopic flux is

Giv1/2,(v, Q) =AlLq o ;v (f g0+ fir-;-(l_,j)lﬂx<0)
101/ V32 (5" 10,50 + 8xFl 1 jLa, <o)
+Cl1/2,VELMIWT 5 ]
+Dfy 10 VP2 (5 M 1jajlas0 + 0EMI 5 la, <0)

(31)

where 6LR M ,j are the Maxwellian slopes.

+1/
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fwiae JGKS-M1

A numerical scheme for this moment model can be obtained by following
the same procedure using UGKS. The finite volume formulations are

I o 0 1 0 0
At + E(Xi—&—l/zj - Xi—1/2,j) + Fy(Xi,j+1/2 - Xi,j—l/z) (32a)
n n 0,n+1

= v (MW = £,

f.l’-"+1 —f7 1

1
) 1 1 1 1
~Ar T E(Xi+1/2,j = Xi-1/2) + Fy(xi,j+1/2 = Xij-1/2) (32b)
n+1f1 n+1
I,_] °

where the fluxes are angular moments of the UGKS microscopic flux
computed with £, = £". = e B2
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mvar (JGKS-M1

The mesoscopic fluxes are

X?H/z,j(v) =AlL1/0,V <Qx?iz']le>0 + mel,jﬂﬂx<o>
n

33a
+%/2JVzM[Wi"+1/2J] (rf’il/zu' + r?fl/y) “W(v), .
Xi1/0 (V) =A% 0 v (R 1,50 + 2QF1 1o, <o)
+C,+§/2u VMIW?,, 5 lex (33b)
12 Di12y V2

) M[W,+1/2,J] (I-?-',L-I/Z,J I',+1/2J> W(v)ex.
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fwiae JGKS-M1

Diffusion limit
In the diffusion regime, the limit macroscopic flux

n n
giv1; — dij

_ 1 0 —2 Ax
Pit12) = <<1v2> X,-+1/2,J-(V)> Y 30i41/0) | BYivLi —Yig |’ (34)
3

2
X

2
is the second order centred flux for the diffusion system where y = q?.

Diffusion schemes

Different diffusion schemes can be recovered depending on the set of
variables used in the Maxwellian reconstructions. To recover the "natural"
diffusion scheme, the variables (p, q;) have to be chosen in the Maxwellian
slopes.
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fwiae JGKS-M1

Angular half-moments of the M1 distribution function

The integrals of the form / Q’;Q/ye“rﬂ'ﬂﬂgxgodﬂ are not analytical.
y2

To overcome this problem, we perform a Gauss-Legendre quadrature
formula on a reduced form of the half-moments:

1
Qkf1 :fw/ ke To(Bayy/1 — 12)dp. 35
(AFa.z0) = g pam [ 1€ To(B /1 — H2)d (35)

Quadrature

In practice, to reduce the computational cost, few points are used.
Consistent fluxes are recovered by performing a renormalization to ensure

(QF10,50) , + (uFla.<0) , = (2%F). (36)
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wmar - Nonlocal th | t t
avaR  Nonlocal thermal transpor

This model allows to describe nonlocal thermal transport effects. The local

2 1
" Vg g o ONL 3
flux is ¢q = —-—Vx—— and the nonlocal one is ¢, = — (v>fy).
9% " p n
1000 4
39 Local heat flux —> |
0 . Nonlocal heat flux
36
1000 35
33
—2000
3 ~3000 3
27 4000
= oa —0 s000 © 25
21 200 | ~6000 )
i
18 065 0.675 0.7 ~7000
8000
15 Local Flux 15
Noniocal Flux - - - - [{ 9000
12 Temperature
H t ~10000 1
0 01 02 03 04 05 06 07 08 09 1
x x

Figure: Temperature, local and nonlocal heat fluxes in the domain (A-preheating,
B-flux limitation, C-anti-natural flux and D-flux rotation).
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immar - Conclusion and perspectives

In the linear transport context, we proposed a numerical procedure to
obtain numerical schemes for moment models.
This method is general and has been applied to M1 and M2.
A second order extension has been proposed and the scheme has been
shown to be highly accurate.
The realizability can be ensured under a CFL-like condition.

This work has been extended for the M1 model of electronic transport.

A quadrature method has been developed to compute the half angular
moments of the M1 distribution function.

Arbitrary diffusion schemes can be easily recovered.

A second order extension has also been proposed and the scheme has
been shown to be highly accurate.

This scheme is currently being adapted to unstructured meshes.

Extension to non relaxation operators of collision
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avaR M2 moment model

. T
The M2 distribution function is 7(v) = e®*#v* V" For m = (1 v V2) ,
the M2 moment model is

natp + aX_/ — 07

. g,
notj +0xq = o (37)
o [1
n@tq+axk = — (P—Q> )
€ \3

where k = <v3?(v)>.
Legendre basis

-
The Legendre basis m = <1 v <v2 — >) can be used to recover a

diagonal source term.
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AR M2 closure of UGKS

The FV formulation is

M + 1 ((Dp _
At Ax " i+1/2
+1 n
N R PN
A Ak e
qln+1 ql 1 (q)q
At A i+1/2

(D/[')—l/Z) =0,
i —0
B cb{'—l/z)
o
cb?fl/Z) ne

N+

J,

(

)

1 1
3

where the first order in space UGKS-M2 fluxes are:

n+1
—q;

n b ., n
¢f+1/2 =A <vf, Tyso+ Vf+11lv<0> + 3A7X(ﬂi+1 —pi)

@/

C n
I+1/2 A< f; V>0+V f;+1:ﬂ-v<0>+§pi+1/27

).

N A D
cl>,q+1/2 A <V3f;'n]lv>0 + V3fi’—1&-1]IV<0> + 5A7X(P7+1 =7

(39a)
(39b)

(39¢)
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e JGKS-M2

From a numerical point of view, the entropic variables are computed by
solving for A in the non linear equation

U= <me (")> (40)

using a gradient descent algorithm. The first equation can be expressed
using special functions (complementary error and Dawson functions):

sty eﬁF+(f+ f>—e‘BF+<f+\ﬁ 7 >0

p:
2vh eﬁF<—\/|7—2\/W>—ef3F< M_T\/W <0
(41)

The entropic variables are then used to compute the half moments (using a
similar expression) in the fluxes.
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IRMAR
AMAR - Results

Figure: Density in the domain at time t = 0.1,0.4,1.0,1.6 and 4.0.
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RMAR - Unstructured meshes

From a formal point of view, the extension to unstructured meshes is quite
straightforward. The main difficulty is to obtain a good diffusion flux in the
limit. Indeed, the finite volume formulation of the diffusion equation in an
unstructured context is (for cell K)

Wi — Wi le]
K= N o, (42)
At Lle=KnL K]
Vq *Ne
where ®; /. = 0. §qu N (xe).
e \3 P) e

Normal gradient on general meshes
qL — 9K

does not
XK — x|

On general meshes, the approximation (Vg - n.)(xe) =

ensure the consistency of the diffusion scheme.
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iBMAR - Diamond scheme

The main idea of the diamond scheme is to to compute the gradient on the
diamond & using appropriate reconstructions.

1
sz/vu
12| /2
( Ug — Uy UN—(k> Uy — Us
= (1 K ne + ———=

Xe—xw)-ne e €]

(43)

te
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®vAR  Diamond Scheme in UGKS

In UGKS, the Maxwellian reconstruction determines the limit diffusion
scheme. We need to define two slopes in the reconstruction:
Lpagn :
M(t,x,y, ) = /\/I[W?H/QJ] + {g’;/\;’i:uz,j(x Xi11/2,) !fx < Xit1/2, _
x ,-+1/2,J-(X - Xi+1/2,j) if x > Xit+1/2,j
(44)
Those slopes are computed based on the gradient of the macroscopic
variables. Those gradients can be computed based on the diamond scheme.
However, the Maxwellian slopes need to be defined on the half spaces, thus

half gradients should be introduced.

Natural idea

The half-gradients could be computed based on the half diamond on each
side of the interface.
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