Local subcell monolithic DG/FV scheme

François Vilar

Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, France

- DG as a subcell FV
- Monolithic subcell DG/FV scheme
- Entropy stabilities
- 5 Maximum principles
 - 6 Conclusion

Scalar Conservation Law (SCL)

- $\partial_t u(\mathbf{x}, t) + \nabla_x \cdot \mathbf{F}(u(\mathbf{x}, t)) = 0, \qquad (\mathbf{x}, t) \in \mathbb{R}^d \times [0, T]$
- $u(\mathbf{x}, 0) = u_0(\mathbf{x}),$

$$\mathbf{X} \in \mathbb{R}^d$$

Fundamental difficulty

- Even considering smooth flux function $F(\cdot)$ and initial datum $u_0(\cdot)$ (C^{∞} for instance), solution may become discontinuous in finite time
- Standard example: Burgers equation

$$\begin{cases} \partial_t u + \partial_x \left(\frac{1}{2}u^2\right) = 0, & (x,t) \in [0,1] \times \mathbb{R}^+, \\ u(x,0) = \sin(2\pi x), & x \in [0,1]. \end{cases}$$

Strong solution

• Local in time existence and uniqueness of a solution $u \in C^1(\mathbb{R}^d \times [0, t_c[)$

Conservation laws

Formation of a discontinuity in finite time

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Weak solution

•
$$\int \int_{\mathbb{R}^d \times \mathbb{R}^+} \left(u \, \partial_t \psi + \boldsymbol{F}(u) \cdot \nabla_x \psi \right) \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}t - \int_{\mathbb{R}^d} u_0(\boldsymbol{x}) \, \psi(\boldsymbol{x}, 0) \, \mathrm{d}\boldsymbol{x} = 0$$

• Non-uniqueness of a weak solution $u \in L^{\infty}_{loc}(\mathbb{R}^d \times \mathbb{R}^+)$

Entropy definition

- Let $u \in C^1(\mathbb{R}^d \times [0, t_c[)])$ be a strong solution
- η a strictly convex function is an entropy if $\exists \phi$ s.t.

 $\partial_t \eta(u) + \nabla_x \cdot \phi(u) = 0$

Unique entropic weak solution

 $\forall \psi \in \mathcal{C}_0^1(\mathbb{R}^d \times \mathbb{R}^+)$

 $\forall \psi \in \mathcal{C}_0^1(\mathbb{R}^d \times \mathbb{R}^+)$

- Let $u \in L^{\infty}_{loc}(\mathbb{R}^d \times \mathbb{R}^+)$ be a weak solution
- *u* is the unique entropic weak solution if it satisfies, for any pair (η, ϕ)

$$\int \int_{\mathbb{R}^d \times \mathbb{R}^d} \left(\eta(u) \, \partial_t \psi + \phi(u) \, \cdot \, \nabla_x \psi \right) \, \mathrm{d} \boldsymbol{x} \, \mathrm{d} t - \int_{\mathbb{R}^d} \eta \left(u_0(\boldsymbol{x}) \right) \psi(\boldsymbol{x}, 0) \, \mathrm{d} \boldsymbol{x} \ge 0$$

Conservation laws

Formation of a discontinuity in finite time

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Challenges of numerical discretization

- The weak solution we wish to approach may present areas of great regularity as well as discontinuities of great intensity
- → Smooth areas: high accuracy
- ----> Discontinuities: strong robustness and stability
- ---> Everywhere: additional mathematical or physical constraints
 - ↔ Maximum principle or positivity
 - \hookrightarrow Entropy inequalities

 $\hookrightarrow \ldots$

Numerical schemes and discontinuous approximated solution

Finite Volume
(Weighted) Essentially Non-Oscillatory
Discontinuous Galerkin

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

F۷

DG

(W)-ENO

Discontinuous Galerkin scheme

- Introduced by Reed and Hill in 1973 in the frame of the neutron transport
- Major development and improvements by B. Cockburn and C.-W. Shu

Procedure

- Local variational formulation
- Piecewise polynomial approximation of the solution in the cells
- Choice of the numerical fluxes
- Time integration

Advantages

- Natural extension of Finite Volume method
- Excellent analytical properties (L₂ stability, hp-adaptivity, ...)
- Extremely high accuracy (superconvergent for scalar conservation laws)
- Compact stencil (involve only face neighboring cells)

Scalar conservation law

• $\partial_t u(\mathbf{x}, t) + \nabla_x \cdot \mathbf{F}(u(\mathbf{x}, t)) = 0, \quad (\mathbf{x}, t) \in \omega \times [0, T]$

•
$$u(\mathbf{x}, \mathbf{0}) = u_{\mathbf{0}}(\mathbf{x}),$$
 $\mathbf{x} \in \omega$

$(k+1)^{\text{th}}$ order semi-discretization

- $\{\omega_c\}_c$ a partition of ω , such that $\omega = \bigcup_c \omega_c$
- $u_h(\mathbf{x}, t)$ the numerical solution, such that $u_{h|\omega_c} = u_h^c \in \mathbb{P}^k(\omega_c)$

$$u_h^c(\mathbf{x},t) = \sum_{m=1}^{N_k} u_m^c(t) \, \sigma_m^c(\mathbf{x})$$

•
$$\{\sigma_m^c\}_{m=1,...,N_k}$$
 a basis of $\mathbb{P}^k(\omega_c)$, with $N_k = \frac{(k+1)(k+2)}{2}$ in 2D.

Local variational formulation on ω_c

•
$$\int_{\omega_c} \frac{\partial u_h^c}{\partial t} \psi \, \mathrm{d} V = \oint_{\omega_c} \mathbf{F}(u_h^c) \cdot \nabla_x \psi \, \mathrm{d} V - \oint_{\partial \omega_c} \psi \, \mathcal{F}_n \, \mathrm{d} S,$$

$$\forall \psi \in \mathbb{P}^{\kappa}(\omega_{c})$$

numerical flux

François Vilar (IMAG, Montpellier, France)

• $\mathcal{F}_n = \mathcal{F}(u_b^c, u_b^v, \mathbf{n})$

Numerical example: solid body rotation

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Rotation of composite signal

Rotation of composite signal

François Vilar (IMAG, Montpellier, France)

Spurious oscillations, aliasing and non-entropic behavior

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Gibbs phenomenon and non-admissible solution

- High-order schemes leads to spurious oscillations near discontinuities
- Non-admissible solution potentially leading to a crash
- Vast literature of how prevent this phenomenon to happen:

⇒ a priori and a posteriori limitations

A priori limitation

- Artificial viscosity
- Slope/moment/hierarchical limiter
- ENO/WENO limiter
- Flux limiter and FCT schemes
- Monolithic HO/LO schemes

A posteriori limitation

- MOOD ("Multi-dimensional Optimal Order Detection")
- A posteriori subcell correction

Admissible numerical solution

- Maximum principle / positivity preserving
- Limit the apparition of spurious oscillations
- Ensure a correct entropic behavior

Preserving high-accuracy and subcell resolution

Reduce the characteristic length of action

Methodology

Blend, at the subcell scale, high-order DG and 1st-order FV

- **F.V.**, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.
- **F.V.**, Local subcell monolithic DG/FV convex property preserving scheme on unstructured grids and entropy consideration. JCP, 2024.

François Vilar (IMAG, Montpellier, France)

Introduction

- 2 DG as a subcell FV
 - 3 Monolithic subcell DG/FV scheme
 - 4 Entropy stabilities
 - 5 Maximum principles
 - 6 Conclusion

François Vilar (IMAG, Montpellier, France)

DG schemes through residuals

•
$$(U_c)_m = u_m^c$$
 Solution moments
• $(M_c)_{mp} = \int_{\omega_c} \sigma_m \sigma_p \, dV$ Mass matrix
• $(\Phi_c)_m = \oint_{\omega_c} \mathbf{F}(u_h^c) \cdot \nabla_x \sigma_m \, dV - \oint_{\partial \omega_c} \sigma_m \, \mathcal{F}_n \, dS$ DG residuals

Subdivision and definition

• ω_c is subdivided into N_s subcells S_m^c

• Let us define
$$\overline{\psi}_m^c = \frac{1}{|S_m^c|} \int_{S_m^c} \psi \, \mathrm{d}V$$
 the subcell mean value

Submean values

•
$$\overline{u}_{m}^{c} = \frac{1}{|S_{m}^{c}|} \sum_{q=1}^{N_{k}} u_{q}^{c} \int_{S_{m}^{c}} \sigma_{q} \, dV \implies \overline{U_{c} = P_{c} U_{c}}$$

• $(\overline{U}_{c})_{m} = \overline{u}_{m}^{c}$ Submean values
• $(P_{c})_{mp} = \frac{1}{|S_{m}^{c}|} \int_{S_{m}^{c}} \sigma_{p} \, dV$ Projection matrix
 $\Rightarrow \qquad \boxed{\frac{d\overline{U}_{c}}{dt} = P_{c} M_{c}^{-1} \Phi_{c}}$
Admissibility of the cell sub-partition into subcells
• $P_{c}^{t} P_{c}$ has to be non-singular
 $\Rightarrow \qquad \boxed{U_{c} = (P_{c}^{t} P_{c})^{-1} P_{c}^{t} \overline{U}_{c}}$ Least square procedure
• If $N_{r} = N_{r}$ $\overline{U}_{c} = P_{c} H_{c} \Leftrightarrow H_{c} = P_{c}^{-1} \overline{H}_{c}$

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Subcell Finite Volume: reconstructed fluxes

Let us introduce the reconstructed fluxes

$$\frac{\mathrm{d}\,\overline{u}_m^c}{\mathrm{d}t} = -\frac{1}{|S_m^c|} \sum_{S_p^v \in \mathcal{V}_m^c} I_{mp}\,\widehat{F_{pm}}$$

- \mathcal{V}_m^c the set of face neighboring subcells of \mathcal{S}_m^c
- We impose that on the boundary of cell ω_c , so for $S_p^v \notin \omega_c$

$$I_{mp} \, \widehat{F_{pm}} = \oint_{f_{mp}^c} \mathcal{F}_n \, \mathrm{d}\boldsymbol{S} \equiv \oint_{f_{mp}^c} \mathcal{F}\left(\boldsymbol{u}_h^c, \, \boldsymbol{u}_h^v, \, \boldsymbol{n}_{mp}^c\right) \, \mathrm{d}\boldsymbol{S}$$

- $\widetilde{\mathcal{V}_m^c}$ the set of face neighboring subcells of S_m^c belonging to ω_c
- Let A_c be the adjacency matrix such that

$$(\mathbf{A}_{c})_{mp} = \begin{cases} 1 & \text{if } S_{p}^{v} \in \widecheck{\mathcal{V}_{m}^{c}} \text{ with } m < p, \\ -1 & \text{if } S_{p}^{v} \in \widecheck{\mathcal{V}_{m}^{c}} \text{ with } m > p, \\ 0 & \text{if } S_{p}^{v} \notin \widecheck{\mathcal{V}_{m}^{c}}. \end{cases}$$

Subcell Finite Volume: reconstructed fluxes

• Let us introduce $D_c = \text{diag}\left(|S_1^c|, \dots, |S_{N_k}^c|\right)$ and $(B_c)_m = \int_{\partial S_m^c \cap \partial \omega_c} \mathcal{F}_n \, \mathrm{d}S$

• Let $\widehat{F_c}$ be the vector containing all the interior faces reconstructed fluxes

$$-A_c \, \widehat{\mathsf{F}_c} = D_c \, P_c \, M_c^{-1} \, \Phi_c + \mathsf{B}_c$$

Graph Laplacian technique

• $A_c \in \mathcal{M}_{N_s \times N_f^c}$ with N_f^c the number of interior faces • $(L_c)_{mp} := (A_c A_c^t)_{mp} = \begin{cases} |\widetilde{\mathcal{V}_m^c}| & \text{if } m = p, \\ -1 & \text{if } S_p^v \in \widetilde{\mathcal{V}_m^c}, \\ 0 & \text{otherwise.} \end{cases}$ • $L_c \mathbf{1} = \mathbf{0}$ where $\mathbf{1} = (1, \dots, 1)^t \in \mathbb{R}^{N_s}$ • $\Pi = \frac{1}{N_s} (\mathbf{1} \otimes \mathbf{1}) \in \mathcal{M}_{N_s}$

Graph Laplacian technique

• Let \mathcal{L}_c^{-1} be the pseudo-inverse of L_c such that

$$\mathcal{L}_{c}^{-1} = (\mathcal{L}_{c} + \lambda \Pi)^{-1} - \frac{1}{\lambda} \Pi \qquad \forall \lambda \neq 0$$

• Then, $\widehat{F_c}$ is uniquely defined as following

$$\widehat{\mathbf{F}_{c}} = -\mathbf{A}_{c}^{t} \, \mathcal{L}_{c}^{-1} \left(\mathbf{D}_{c} \, \mathbf{P}_{c} \, \mathbf{M}_{c}^{-1} \, \Phi_{c} + \mathbf{B}_{c} \right)$$

- The only terms depending on the time are Φ_c and B_c
- Equivalently, the polynomial solution governing equation is given by

$$\frac{\mathrm{d}\,\mathsf{U}_c}{\mathrm{d}t} = -\mathsf{P}_c^{-1}\,\mathsf{D}_c^{-1}\left(\mathsf{A}_c\,\widehat{\mathsf{F}_c} + \mathsf{B}_c\right)$$

remark

• This unique solution does exit since

$$\left(\textit{D}_{c} \textit{P}_{c} \textit{M}_{c}^{-1} \Phi_{c} + \mathsf{B}_{c}
ight)$$
 . $\mathbf{1} = 0$

Different cell subdivisions

Figure: Examples of easily generalizable subdivisions for a triangle cell

DG is DG

- Only the functional space matters
- The cell subdivision has no influence on the resulting scheme
- Even in the case where $N_s > N_k$

TD3

Rotation of a composite signal after one full rotation

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Rotation of a composite signal after one full rotation

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Introduction

- 2) DG as a subcell FV
- Monolithic subcell DG/FV scheme
 - 4 Entropy stabilities
 - 5 Maximum principles
 - 6 Conclusion

Blending low and high order fluxes

• Each face f_{mp}^c of each subcell S_m^c will be assigned two fluxes

$$\widetilde{F_{mp}} = \mathcal{F}_{mp}^{FV} + \underbrace{\theta_{mp}}_{\in [0,1]} \underbrace{\left(\widehat{F_{mp}} - \mathcal{F}_{mp}^{FV}\right)}_{\Delta F_{mp}}$$

•
$$\mathcal{F}_{mp}^{\scriptscriptstyle \mathsf{FV}} := \mathcal{F}\left(\overline{u}_m^c, \overline{u}_p^v, \boldsymbol{n}_{mp}\right)$$

• $\widehat{F_{mp}}$

first-order subcell numerical flux

high-order DG reconstructed flux

• The local subcell monolithic DG/FV then writes as follows

$$\frac{\mathrm{d}\,\overline{u}_{m}^{c}}{\mathrm{d}t} = -\frac{1}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} I_{mp} \widetilde{F_{mp}}$$

François Vilar (IMAG, Montpellier, France)

Numerical flux

$$\mathcal{F}(u^-, u^+, n) = rac{\left(F(u^-) + F(u^+)
ight)}{2} \cdot n - rac{\gamma(u^-, u^+, n)}{2} \left(u^+ - u^-
ight)$$

•
$$\gamma(u^-, u^+, \boldsymbol{n}) \geq \max_{\boldsymbol{w} \in I(u^-, u^+)} \left(|\boldsymbol{F}'(\boldsymbol{w}) \boldsymbol{.} \boldsymbol{n}| \right)$$

•
$$I(a, b) = [min(a, b), max(a, b)]$$

In the system case, we make use of either Rusanov, HLL, HLL-C, ...

Time integration

- For sake of simplicity, we focus on forward Euler (FE) time stepping, as SSP Runge-Kutta can be formulated as convex combinations of FE
- The semi-discrete scheme provided with FE time integration writes

$$\overline{u}_{m}^{c,n+1} = \overline{u}_{m}^{c,n} - \frac{\Delta t}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} I_{mp} \widetilde{F_{mp}}$$

François Vilar (IMAG, Montpellier, France)

Reformulation of the monolithic subcell scheme

•
$$\gamma_{mp} := \gamma \left(\overline{u}_{m}^{c,n}, \overline{u}_{p}^{v,n}, \mathbf{n}_{mp} \right)$$
 1st-order FV dissipation coefficient
• $\overline{u}_{m}^{c,n+1} = \overline{u}_{m}^{c,n} - \frac{\Delta t}{|S_{m}^{c}|} \left(\sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} l_{mp} \widetilde{F_{mp}} \pm \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} l_{mp} \gamma_{mp} \overline{u}_{m}^{c,n} + \mathbf{F}(\overline{u}_{m}^{c,n}) \cdot \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} n_{mp} \right)$

$$= \left(1 - \frac{\Delta t}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} l_{mp} \gamma_{mp} \right) \overline{u}_{m}^{c,n}$$

$$+ \frac{\Delta t}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} l_{mp} \gamma_{mp} \left(\overline{u}_{m}^{c,n} - \frac{\widetilde{F_{mp}} - \mathbf{F}(\overline{u}_{m}^{c,n}) \cdot \mathbf{n}_{mp}}{\gamma_{mp}} \right)$$

• $\overline{u}_{m}^{c,n+1} = \left(1 - \frac{\Delta t}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} l_{mp} \gamma_{mp} \right) \overline{u}_{m}^{c,n} + \frac{\Delta t}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} l_{mp} \gamma_{mp} \overline{u_{mp}}^{-}$
• **Convex combination under CFL condition**

Blended Riemann intermediate states

(a) 1st-order situation

(b) Blended flux situation

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Admissible solution

• G a convex admissible set where the solution has to remain in

•
$$G = \left\{ u_0 \in [\alpha, \beta] \implies u \in [\alpha, \beta] \right\}$$

•
$$G = \left\{ u = \begin{pmatrix} \rho \\ \boldsymbol{q} \\ E \end{pmatrix}, \quad \rho > 0, \, p(u) > 0 \right\}$$

• A sufficient condition to ensure $\overline{u}_m^{c,n+1} \in G$ is that

$$\forall S_{p}^{v} \in \mathcal{V}_{m}^{c}, \qquad \widetilde{u_{mp}}^{\pm} = u_{mp}^{*, \mathsf{FV}} \pm \theta_{mp} \frac{\Delta F_{mp}}{\gamma_{mp}} \in G$$

- We want to prevent to code from crashing (apparition of NaN, ...)
- We want to prevent the apparition of spurious oscillations
- We want to ensure discrete entropy inequalities (?)
- We apply a local blending coefficients smoothening to avoid too stiff transition from high to low orders

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Find the correct θ_{mp}

SCI

Introduction

- 2 DG as a subcell FV
- 3 Monolithic subcell DG/FV scheme
- Entropy stabilities
 - 5 Maximum principles
 - 6 Conclusion

Questions regarding entropy

• Can we find the θ_{mp} coefficients ensuring an entropy inequality?

What do we mean by entropy inequality?

- for one or any entropy?
- at the discrete or semi-discrete time level?
- at the cells or subcells space level?

If we manage to ensure an entropy inequality, is it worth the effort?

- in terms of accuracy
- in terms of other critical properties to ensure, as positivity for instance

• Do we really need an entropy inequality to practically capture the entropic weak solution?

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Definitions

- (η, φ)
- $v(u) = \eta'(u)$
- $\psi(u) = v(u) \boldsymbol{F}(u) \phi(u)$

entropy - entropy flux entropy variable entropy potential flux

for all (η, ϕ)

Subcell entropy stability at the discrete level

• if
$$\Delta F_{mp}$$
. $\left(\overline{u}_{p}^{v,n}-\overline{u}_{m}^{c,n}\right)>0$,

$$heta_{mp} \leq \min\left(1, \, rac{\left(\gamma_{mp} - \gamma_{max}
ight)\left(\overline{u}_{p}^{v,n} - \overline{u}_{m}^{c,n}
ight)}{2\,\Delta F_{mp}}
ight)$$

•
$$\gamma_{\max}$$
 := $\max_{w \in I(\overline{u}_m^{c,n}, \overline{u}_p^{v,n})} \left(|\boldsymbol{F}'(w) \cdot \boldsymbol{n}_{mp}| \right)$

 \Rightarrow 1st order scheme!

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Semi-discrete subcell entropy dissipation

for a given (η, ϕ)

• if
$$\Delta F_{mp} \cdot \left(v(\overline{u}_{p}^{v,n}) - v(\overline{u}_{m}^{c,n}) \right) > 0$$
,

2nd order scheme!

A. RUEDA-RAMÍREZ, B. BOLM, D. KUZMIN AND G. GASSNER, Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods. Commun. Appl. Math. Comput., 2024.

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Sub-resolution basis functions

• Let $\{\varphi_m^c\}_m$ be the sub-resolution basis function such that, $\forall \psi \in \mathbb{P}^k(\omega_c)$

$$\int_{\omega_c} \varphi_m \psi \, \mathrm{d} V = \int_{\mathcal{S}_m^c} \psi \, \mathrm{d} V$$

• Then, given $v_h^c \in \mathbb{P}^k(\omega_c)$, it writes

$$\boldsymbol{v}_h^c = \sum_{m=1}^{N_k} \underline{\boldsymbol{v}}_m^c \, \boldsymbol{\varphi}_m^c$$

Semi-discrete cell entropy dissipation

for a given (η, ϕ)

 $N_{\rm s} = N_k$

•
$$\Delta \eta_c := \frac{\mathrm{d}}{\mathrm{d}t} \oint_{\omega_c} \eta(u_h^c) \,\mathrm{d}V = \oint_{\omega_c} v(u_h^c) \,\partial_t u_h^c \,\mathrm{d}V = \int_{\omega_c} v_h^c \,\partial_t u_h^c \,\mathrm{d}V$$

•
$$v_h^c = \sum_{m=1}^{N_k} \underline{v}_m^c \varphi_m^c$$
 L^2 projection of $v(u_h^c)$ onto \mathbb{P}^k

•
$$\Delta \eta_c = \sum_{m=1}^{N_k} \underline{v}_m^c \int_{\omega_c} \varphi_m^c \partial_t u_h^c \, \mathrm{d}V = \sum_{m=1}^{N_k} |S_m^c| \, \underline{v}_m^c \, \frac{\mathrm{d}\overline{u}_m^c}{\mathrm{d}t} = -\sum_{m=1}^{N_k} \underline{v}_m^c \sum_{S_p^\nu \in \mathcal{V}_m^c} I_{mp} \, \widetilde{F_{mp}}$$

François Vilar (IMAG, Montpellier, France)

Continuous Knapsack problem

• The sufficient condition rewrites as

$$\mathbf{C}_{c}$$
 . $\mathbf{\Theta}_{c} \leq \mathsf{D}_{c}$

• Θ contains all the subcells' faces, \mathbf{C}_c the vector defined as

$$C_{mp}^{c} = \begin{cases} \oint_{f_{mp}} \left(\left(v(u_{h}^{c}) - \underline{v}_{m}^{c} \right) \mathcal{F}_{n} - \left(\psi(u_{h}^{c}) - \psi(u(\underline{v}_{m}^{c})) \right) \cdot \boldsymbol{n}_{mp} \right) dS, & \forall f_{mp} \subset \partial \omega_{c} \\ I_{mp} \left(\underline{v}_{p}^{c} - \underline{v}_{m}^{c} \right) \Delta F_{mp}, & \text{otherwise} \end{cases}$$

$$\bullet D_{c} = \sum_{f_{mp} \in \hat{f}_{c}} I_{mp} \psi(u(\underline{v}_{m}^{c})) \cdot \boldsymbol{n}_{mp} - \sum_{f_{mp} \in \tilde{f}_{c}} I_{mp} \left(\underline{v}_{p}^{c} - \underline{v}_{m}^{c} \right) \mathcal{F}_{mp}^{\mathsf{FV}}$$

$$\bullet \mathcal{F}_{mp}^{\mathsf{FV}} = \mathcal{F} \left(u(\underline{v}_{m}^{c}), u(\underline{v}_{p}^{v}), \boldsymbol{n}_{mp} \right) & \text{modified FV numerical flux}$$

$$\bullet \underline{\mathsf{Because}} \quad D_{c} \geq 0 \quad \text{the Knapsack problem is indeed solvable}$$

Y. LIN AND **J. CHAN**, *High order entropy stable discontinuous Galerkin spectral element methods through subcell limiting.* JCP, 2024.

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Greedy algorithm

• Find $\mathbf{0} \leq \mathbf{\Theta} \leq \mathbf{\Theta}^{e} \leq \mathbf{1}$ maximizing $\sum \theta_{mp}$ such that

$$\mathbf{C}_{c}$$
 . $\mathbf{\Theta}_{c} \leq \mathsf{D}_{c}$

• θ_{mp}^{e} being any given supplementary constraint

High-order accuracy preservation

- Substituting *u_h* by a smooth solution *u*
- h_c is the diameter of cell ω_c
- Then, we have that

$$\mathbf{C}_{c}$$
. 1 – D_c = $|\omega_{c}| \mathcal{O}(h_{c}^{k+1})$

• This finally implies that

$$\widetilde{F_{mp}} = \widehat{F_{mp}} + (\theta_{mp} - 1) \Delta F_{mp} = \widehat{F_{mp}} + \mathcal{O}(h_c^{k+2})$$

François Vilar (IMAG, Montpellier, France)

François Vilar (IMAG, Montpellier, France)

Entropy stabilities

Numerical results

Linear advection of a composite signal

François Vilar (IMAG, Montpellier, France)

Entropy stabilities

Numerical results

François Vilar (IMAG, Montpellier, France)

Entropy stabilities Numerical results

Non-linear non-convex flux Buckley case

François Vilar (IMAG, Montpellier, France)

80 cells

Entropy stabilities

Numerical results

Non-linear non-convex flux Buckley case

François Vilar (IMAG, Montpellier, France)

80 cells

KPP non-convex flux problem

 $\eta(\mathbf{U}) = \frac{1}{2}\mathbf{U}^2$

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Figure: \mathbb{P}^5 pure DG with positivity limiter and \mathbb{P}^5 -DG/FV monolithic scheme with cell entropy stability on 20 cells

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Conclusion of entropy?

Questions regarding entropy \longrightarrow pieces of answer

• Can we find θ_{mp} coefficients ensuring an entropy inequality?

 \hookrightarrow Yes!

- What do we mean by entropy inequality, and is it worth the effort?
 - for any entropy, at the discrete time level and for any subcell

 \hookrightarrow 1st-order

for a given entropy, at the semi-discrete time level for any subcells

 \hookrightarrow 2nd-order

for a given entropy, at the semi-discrete time level for any cells

 $(k+1)^{\text{th}}$ -order $\hookrightarrow \mathcal{F}_{mp}^{\text{FV}} = \mathcal{F}\left(\boldsymbol{u}(\underline{\boldsymbol{v}}_{m}^{c}), \, \boldsymbol{u}(\underline{\boldsymbol{v}}_{p}^{v}), \, \boldsymbol{n}_{mp}\right)$

Do we absolutely need entropy stability while aiming for high order?

 \hookrightarrow Unclear... \Rightarrow GMP and LMP + relaxation

Introduction

- 2 DG as a subcell FV
- 3 Monolithic subcell DG/FV scheme
- 4 Entropy stabilities
- 5 Maximum principles
 - 6 Conclusion

Global maximum principle

$$\theta_{\textit{mp}} \leq \min\left(1, \left|\frac{\gamma_{\textit{mp}}}{\Delta F_{\textit{mp}}}\right| \min\left(\beta - u_{\textit{mp}}^{*, \mathsf{FV}}, u_{\textit{mp}}^{*, \mathsf{FV}} - \alpha\right)\right)$$

•
$$\alpha_m^c := \min_{S_q^w \in \mathcal{N}(S_m^c)} \left(\overline{u}_q^{w,n}\right)$$

$$eta_m^{m{c}} := \max_{\substack{S_a^{m{w}} \in \mathcal{N}(S_m^{m{c}})}} ig(\overline{m{L}}$$

 $\overline{u}^{c,n+1}$

w,n

$$\theta_{mp} \leq \min\left(1, \left|\frac{\gamma_{mp}}{\Delta F_{mp}}\right| \left\{ \begin{array}{ll} \min\left(\beta_{p}^{\nu} - u_{mp}^{*, \mathsf{FV}}, u_{mp}^{*, \mathsf{FV}} - \alpha_{m}^{\mathsf{c}}\right) & \quad \text{if } \Delta F_{mp} > 0\\ \min\left(\beta_{m}^{c} - u_{mp}^{*, \mathsf{FV}}, u_{mp}^{*, \mathsf{FV}} - \alpha_{p}^{\nu}\right) & \quad \text{if } \Delta F_{mp} < 0 \end{array} \right)$$

and

- The wider set $\mathcal{N}(S_m^c)$ is, the softer this local maximum principle will be
- Smooth extrema relaxation to preserve accuracy

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

 $\in [\alpha, \beta]$

 $\in [\alpha_m^c, \beta_m^c]$

Burgers equation

$u_0(x,y) = \sin(2\pi (x+y))$

(a) Solution submean values

(b) Blending coefficients

Figure: ₽5-DG/FV scheme with GMP and relaxed-LMP on 242 cells

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

KPP non-convex flux problem

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Positivity of the density and internal energy, at the subcell scale

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Definitions

•
$$\widetilde{F}_{mp} := \mathcal{F}_{mp}^{\text{FV}} + \Theta_{mp} \underbrace{\left(\widehat{F}_{mp} - \mathcal{F}_{mp}^{\text{FV}}\right)}_{\Delta F_{mp}}$$
 convex blended flux
• $\Theta_{mp} = \begin{pmatrix} \theta_{mp}^{\rho} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \theta_{mp}^{q} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \theta_{mp}^{E} \end{pmatrix}$
• $\mathcal{F}_{mp}^{\text{FV}} := \mathcal{F}\left(\overline{V}_{m}^{c,n}, \overline{V}_{p}^{v,n}, \mathbf{n}_{mp}\right)$ Global L-F, Rusanov, HLL(C), ...

•
$$\theta_{mp}^{\rho} = \theta_{mp}^{(1)} \theta_{mp}^{(2)}$$

$$heta_{\textit{mp}}^{(1)} \leq \min\left(1, \left|rac{\gamma_{\textit{mp}}}{\Delta F_{\textit{mp}}^{
ho}}\right|
ho_{\textit{mp}}^{*, \, {\scriptscriptstyle {\rm FV}}}
ight)$$

François Vilar (IMAG, Montpellier, France)

Positivity of the internal energy

•
$$A_{mp} = \frac{1}{(\gamma_{mp})^2} \left(\frac{1}{2} \left\| \Delta F^{\boldsymbol{q}}_{mp} \right\|^2 - \theta^{(1)}_{mp} \Delta F^{\rho}_{mp} \Delta F^{\boldsymbol{E}}_{mp} \right)$$

• $B_{mp} = \frac{1}{\gamma_{mp}} \left(\boldsymbol{q}^{*,FV}_{mp} \cdot \Delta F^{\boldsymbol{q}}_{mp} - \rho^{*,FV}_{mp} \Delta F^{\boldsymbol{E}}_{mp} - \theta^{(1)}_{mp} E^{*,FV}_{mp} \Delta F^{\rho}_{mp} \right)$

• $M_{mp} = \rho_{mp}^{*, FV} E_{mp}^{*, FV} - \frac{1}{2} \left\| \boldsymbol{q}_{mp}^{*, FV} \right\|^2$

$$heta_{mp}^{(2)} \leq \min\left(1, \; rac{M_{mp}}{\left|B_{mp}\right| + \max\left(0, A_{mp}
ight)}
ight)$$

•
$$\theta_{mp}^{\rho} = \theta_{mp}^{\rho(1)} \theta_{mp}^{(2)}, \quad \theta_{mp}^{q^{x}} = \theta_{mp}^{(2)}, \quad \theta_{mp}^{q^{y}} = \theta_{mp}^{(2)}, \quad \theta_{mp}^{E} = \theta_{mp}^{(2)}$$

A. RUEDA-RAMÍREZ, B. BOLM, D. KUZMIN AND G. GASSNER, Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods. Commun. Appl. Math. Comput., 2024.

François Vilar (IMAG, Montpellier, France)

LMP

$$\overline{V}_m^{c,n+1} \in [\alpha_m^c, \beta_m^c]$$

•
$$\mathbf{v} \in \left\{ \rho, \, \mathbf{q}^{\mathbf{x}}, \, \mathbf{q}^{\mathbf{y}}, \, \mathbf{E} \right\}$$

•
$$\alpha_m^c := \min_{S_q^w \in \mathcal{N}(S_m^c)} \left(\overline{v}_q^{w,n}, v_{mq}^{*, \mathrm{FV}} \right)$$
 and $\beta_m^c := \max_{S_q^w \in \mathcal{N}(S_m^c)} \left(\overline{u}_q^{w,n}, v_{mq}^{*, \mathrm{FV}} \right)$

$$\theta_{mp} \leq \min\left(1, \left|\frac{\gamma_{mp}}{\Delta F_{mp}}\right| \left\{ \begin{array}{l} \min\left(\beta_p^{v} - u_{mp}^{*, Fv}, u_{mp}^{*, Fv} - \alpha_m^{c}\right) & \text{if } \Delta F_{mp} > 0\\ \min\left(\beta_m^{c} - u_{mp}^{*, Fv}, u_{mp}^{*, Fv} - \alpha_p^{v}\right) & \text{if } \Delta F_{mp} < 0 \end{array} \right)$$

Smooth extrema relaxation to preserve accuracy

Sod shock tube test case

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

10 cells

Smooth isentropic solution

$ho_0 = 1 + 0.9999999 \sin(2\pi x)^{-1}$

	exist solution					
	L ₁		L ₂		θ_{mp}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	min. θ_{mp}	aver. θ_{mp}
$\frac{1}{10}$	9.07E-4	5.86	1.23È-3	5.90	2.00E-1	0.981
$\frac{1}{20}$	1.56E-5	4.03	2.05E-5	3.83	1.92E-1	0.997
$\frac{1}{40}$	9.53E-7	4.89	1.44E-6	4.85	5.65E-4	0.999
$\frac{1}{80}$	3.21E-8	4.80	5.00E-8	4.87	3.48E-5	0.999
$\frac{1}{160}$	1.15E-9	-	1.71E-9	-	1.00	1.00

Table: Convergence rates of the P⁴-DG/FV scheme with positivity and relaxed-LMP

François Vilar (IMAG, Montpellier, France)

Sod shock tube problem in cylindrical geometry

Figure: ℙ⁵-DG/FV with positivity and relaxed-LMP on a 110 cells mesh

François Vilar (IMAG, Montpellier, France)

(a) Density map

Sedov point blast problem in cylindrical geometry

Mach 3 forward-facing step

Figure: Monolithic subcell DG/FV scheme with positivity and relaxed-LMP

François Vilar (IMAG, Montpellier, France)

Mach 20 hypersonic flow over half cylinder

Figure: Monolithic subcell DG/FV scheme: density and blending coefficients

François Vilar (IMAG, Montpellier, France)

Introduction

- 2 DG as a subcell FV
- 3 Monolithic subcell DG/FV scheme
- 4 Entropy stabilities
- 5 Maximum principles
- 6 Conclusion

Conclusion?

Monolithic local subcell DG/FV scheme

- Reformulate DG schemes as subgrid FV-like schemes:
 - regardless the type of mesh used
 - regardless the space dimension (*in theory*...)
 - regardless the cell subdivision ($N_s \ge N_k$)
- Combine high-order reconstructed fluxes and 1st-order FV fluxes
 - ensuring a maximum or positivity preserving principle at the subcell scale
 - ensuring different entropy stability inequalities
 - reducing significantly the apparition of spurious oscillations
 - preserving the very accurate subcell resolution of DG schemes

Questions

Is an entropy inequality for one entropy enough?

Is entropy inequality absolutely needed?

François Vilar (IMAG, Montpellier, France)

Local subcell monolithic DG/FV scheme

Maybe not \implies GMP + relaxed LMP

Articles on this topic

- **F.V**, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.
- A. HAIDAR, F. MARCHE AND F.V, A posteriori Finite-Volume local subcell correction of high-order discontinuous Galerkin schemes for the nonlinear shallow-water equations. JCP, 2022.
- **F.V** AND **R. ABGRALL**, A posteriori local subcell correction of DG schemes through Finite Volume reformulation on unstructured grids. SIAM SISC, 2023.
- A. HAIDAR, F. MARCHE AND F.V, Free-boundary problems for wave-structure interactions in shallow-water: DG-ALE description and local subcell correction. JSC, 2023.
- **A. HAIDAR, F. MARCHE** AND **F.V**, A robust DG-ALE formulation for nonlinear shallow-water interactions with a floating object. JSC, 2024.
- **F.V**, Monolithic local subcell DG/FV convex property preserving scheme on unstructured grids and entropy consideration. JCP, 2024.

François Vilar (IMAG, Montpellier, France)

Articles on this topic

- **F.V**, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.
- A. HAIDAR, F. MARCHE AND F.V, A posteriori Finite-Volume local subcell correction of high-order discontinuous Galerkin schemes for the nonlinear shallow-water equations. JCP, 2022.
- **F.V** AND **R. ABGRALL**, A posteriori local subcell correction of DG schemes through Finite Volume reformulation on unstructured grids. SIAM SISC, 2023.
- A. HAIDAR, F. MARCHE AND F.V, Free-boundary problems for wave-structure interactions in shallow-water: DG-ALE description and local subcell correction. JSC, 2023.
- **A. HAIDAR, F. MARCHE** AND **F.V**, A robust DG-ALE formulation for nonlinear shallow-water interactions with a floating object. JSC, 2024.
- **F.V**, Monolithic local subcell DG/FV convex property preserving scheme on unstructured grids and entropy consideration. JCP, 2024.

François Vilar (IMAG, Montpellier, France)

