Construction of the relaxation matrix (1/2)

Target PDE:

ou f(u)) (Dxx ny)
-~ . = D D=
ot Vx (g(u) Vx (DY), Dyx Dy

Kinetic system with relaxation:

aldp 0 0 _
8—F+(Qx>~VF:Q*1 o ¢ o |oM=F
ot ¥ 0 0 Aldy €
1) Define a Knudsen number ¢,

2) Perform an asymptotic expansion for ¢ < 1,
3) Identify the terms O(¢) as diffusive terms.
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Introduction to kinetic methods

e Work of Jin and Xin around 1995".
Similarities with Lattice Boltzmann methods:

» in modeling choices: "statistical description”,
» in numerical approximation.

e Advantages :
» Construction of simple, efficient and low-dissipative numerical methods
» Numerical stability obtained from Entropy considerations.

e Limit : restriction to the purely hyperbolic framework.

» Problem of introducing diffusive effects
» Example: Navier-Stokes viscosity and thermal dissipation

1. Jin, Z. Xin, Communications on Pure and Applied Mathematics 48, 235-276, ISSN: 00103640 (1995).
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@ Kinetic methods for hyperbolic systems

@ Introducing viscous effects in 1D
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® Numerical examples, 1D

@ Generalisation of multi-D
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Overview

@ Kinetic methods for hyperbolic systems
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Jin-Xin kinetic method in 1D

We are interested in hyperbolic systems of the form:

ou  Of(u)

— =0 ucRP. 1

at T ax M€ ()
Ex: e Scalar advection (p = 1): u=u, f(u)=cu, c=cte,

e Burgers’ equation (p = 1): u=u, f(u)=u?/2,

o Euler equations (p = 3): u = [p, pu, pE]", f(u) = [pu, pu? + p, (pE + p)u]”.
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Jin-Xin kinetic method in 1D

We are interested in hyperbolic systems of the form:

ou  Of(u)

— =0 ueRP. 1

at " ax 0 Y€ M
Ex: e Scalar advection (p = 1): u=u, f(u)=cu, c=cte,

e Burgers’ equation (p = 1): u=u, f(u)=u?/2,

o Euler equations (p = 3): u = [p, pu, pE]", f(u) = [pu, pu? + p, (pE + p)u]”.

Principle of Jin-Xin’s model?: remplace Eq. (1) by

ou ov

— 4 — = 2
5t Tax =0 (@)
ov  L,ou 1

— — = —(f = = b

T + a o 6( (u) —v), a= cte (3)

When ¢ — 0, the solution of (2)-(3) converges formally towards that of (1).

3. Jin, Z. Xin, Communications on Pure and Applied Mathematics 48, 235—276, ISSN: 00103640 (1995).
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Jin-Xin kinetic method in 1D

Interest of the Jin-Xin model: transport can be diagonalized:

0 F1 a 0 16) F1j| 1 <|:M1j| [F1]>
2 = - _ —_ 4
ot [FJ + {0 —a] ax [Fz e \ M2 Fa| )’ “)
where :
eu=F +F : moment of order 0,
e v=a(F —Fy) : moment of order 1,

u f(u
. My _ U+ f(u) : Maxwellian or equilibrium function,
Mo 2 2a

e If a > |f'(u)|, (4) can be shown to have entropy stability properties [Bouchut]?.

2F. Bouchut, Journal of Statistical Physics 95, 113—-170, 1ISSN: 00224715 (1999).
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Jin-Xin kinetic method in 1D

Interest of the Jin-Xin model: transport can be diagonalized:

0 F1 a 0 16) F1j| 1 (|:M1j| [F1])
2 = - _ —_ 4
ot [FJ + {0 —a] ax [Fz e \ M2 Fa| )’ “)
where :
eu=F +F : moment of order 0,
e v=a(F —Fy) : moment of order 1,

u f(u
. My _ U+ f(u) : Maxwellian or equilibrium function,
Mo 2 2a

e If a > |f'(u)|, (4) can be shown to have entropy stability properties [Bouchut]?.

Note: Similarity with a Boltzmann equation with two discrete velocities (D1Q2): f;
scalar/vector
of; of; 1
e = —a e =a e = (9 f 5
¢ . at % ax T(' ) ®)

2F. Bouchut, Journal of Statistical Physics 95, 113—-170, 1ISSN: 00224715 (1999).
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Generalization of kinetic methods

General writing of a BGK kinetic method? in 2D:

oF oF oF 1
A Ay = —
+hogx thvg =3

K
o £y (M(u) —F), F € R". (6)

k is the number of waves (Jin-Xin: k = 2),

e u = PF, with P : R¥* — RP linear mapping nicknamed as "projector",
e Ax and Ay : diagonal matrices with constant coefficients,

e constant relaxation time.

3p L. Bhatnagar et al., Physical Review 94, 511-525 (1954), R. Natalini, Journal of Differential Equations 148,
292-317, 1SSN: 00220396 (1998), D. Aregba-Driollet, R. Natalini, SIAM Journal on Numerical Analysis 37,
1973-2004, 1SSN: 00361429 (2000).
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Generalization of kinetic methods

General writing of a BGK kinetic method? in 2D:

oF oF oF 1
A Ay = —
+hogx thvg =3

K
o £y (M(u) —F), F € R". (6)

k is the number of waves (Jin-Xin: k = 2),

e u = PF, with P : R¥* — RP linear mapping nicknamed as "projector",
e Ax and Ay : diagonal matrices with constant coefficients,

e constant relaxation time.

We want that the system (6) gets close, when e — 0, to the hyperbolic system;

ou  Of(u)  9dg(u)

ot ox oy

—o0. @)

Which condition(s) on the Maxwelian M?

3p L. Bhatnagar et al., Physical Review 94, 511-525 (1954), R. Natalini, Journal of Differential Equations 148,
292-317, 1SSN: 00220396 (1998), D. Aregba-Driollet, R. Natalini, SIAM Journal on Numerical Analysis 37,
1973-2004, 1SSN: 00361429 (2000).
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Conditions on the Maxwellian

Apply PP to (6):

u 9 7] PM(u) —u
— 4+ — (PAF =—7 =
ot T ox (PACF) + ay(PAyF) <
1st condition: conservation
PM(u) = u
Io] PM(u) —
l: + —(PAXF) + —(]P’/\yF) M) —u_ g

7]

€
But F — M when ¢ — 0.

2nd condition: flux

PAxM(u) = f(u)
PAyM(u) = g(u)

®)

©)
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Example: scalar in 2D with 4 waves

Take p = 1 (scalar problem), k = 4 (4 waves) in 2D, and

a 0 0 0 000 0
o —a 0 0 000 0 2 1
M=1g 0o o0 o/ M=o 0 a ol
0 0 0 0 00 0 -a
4
f(u)
vt |~
Pt 1 1 1 M=Y4 1
[ I 4" 22| g(u)
—g(u)

One can check that: PM = u, PAxM = f(u), PAyM = g(u).

Similar to a D2Q4 lattice for lattice Boltzmann.

9/64



Similarities and differences with LBM methods

BGK kinetic methods Boltzmann methods
oF 5 of. of:

of; i
—+ X A= -t X e&j—=G
ot j,wave# j O J:wave# de

e Linear transport with constant speeds

» Simples numerical methods, low dissipation if
» High CFL for all mesh points

» The Riemann problems are very simple.

e Local relaxation: Very efficient numerical methods

10/64



Similarities and differences with LBM methods

BGK kinetic methods Boltzmann methods
. ) o, ;

=G

oF oF 1
—+ X N—=-(M-F) > > e
ot jwavey ° OX; € Ot jwave# ax;

e Linear transport with constant speeds
> Simples numerical methods, low dissipation if
» High CFL for all mesh points

» The Riemann problems are very simple.

e Local relaxation: Very efficient numerical methods

e Fc R/,
k
e Entropy stability if o (M’ (u)) C [0, +oo[ o (f) eR
(Bouchut, 1999%) e Numerical stability is complex to ana-
> Numerical Stability lyze
° g;{ﬁ?{;hé?eeggo,l;g e I U e Viscous effects at 1st order thanks to
o Chapman-Enskog expansions

4F. Bouchut, Journal of Statistical Physics 95, 113—170, ISSN: 00224715 (1999).
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Diffusive limit of the Jin-Xin systems

Problem with viscous effects: Diffusive limit of the Jin-Xin systems

We rewrite the Jin-Xin system as:

ou  ov

ot Fox 1o
ov. 1opu) 1 B ,

ot T Tox 6(f(U) v), p'(u) > 0. (11)
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Diffusive limit of the Jin-Xin systems

Problem with viscous effects: Diffusive limit of the Jin-Xin systems

We rewrite the Jin-Xin system as:

ou  ov
E 37 =Y (10)
ov. 1opu) 1 B ,
ot T Tox E(f(u) v), p'(u) > 0. (11)
Eq. (11) gives:
v = f(u)— PW) _ OV f(u) — 2PWY)

o ( ) s
ox ot e—0 ox
and then in the limit e — 0, equation (10) becomes an advection-diffusion equation:

ou  of(u) _ 9?p(u)

ot ox ox
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Diffusive limit of the Jin-Xin systems

Problem with viscous effects: Diffusive limit of the Jin-Xin systems

We rewrite the Jin-Xin system as:

ou n ov
at = ox
W IPO iy —v),  Hw>o
3
Eq. (11) gives:
~ Hu) - Bp(u) E8v H(u) — 8p(u)7

ot 5—>O

and then in the limit e — 0, equation (10) becomes an advection-diffusion equation:

ot ax  Ox

ou  of(u) _9p(u)

(10)

(11)
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Diffusive limit of the Jin-Xin systems

Diagonalizing the diffusive Jin-Xin model gives:

o F1 a 0 0 F1:| 1 (|:M1i| |:F1:|)
— — = - - , 12
ot {Fz} + [0 —a] ax {Fz e \ M2 Fa (12)
where:
e u=F+F : moment of order 0,
e v=a(F — F) : moment of order 1,

o a=/p'U)e

u f(u
. [M1] = E P_} % : Maxwellian or equilibrium function,
a
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Diffusive limit of the Jin-Xin systems

Diagonalizing the diffusive Jin-Xin model gives:

o F1 a 0 16) F1:| 1 (|:M1i| [F1])
— — = - — , 12
ot {Fz} + [0 —a] ax {Fz e \ M2 Fa (12)
where:
e u=F+F : moment of order 0,
e v=a(F — F) : moment of order 1,

. [M1] = g {_} f(u) : Maxwellian or equilibrium function,
e a=./p'(u)/e.
Problem of this approach (explicit scheme for transport)

At = EA = CFL

° Ax —— 0
(u) e
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Overview

@ Introducing viscous effects in 1D
Chapman-Enskog
Relaxation matrix
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Idea: Chapman-Enskog

Proposed approach: Analogy with how Navier Stokes is obtained from Boltzmann
(Chapman-Enskog?)

Chapman-Enskog

Boltzmann = Euler + O(¢)

= Euler + ¢ (“viscous effect/diffusion”) +O(&?),

=Navier-Stokes

where ¢ is the Knudsen number.

4s. Chapman, T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 2nd edition (Cambridge
University Press, 1953).
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Idea: Chapman-Enskog

Proposed approach: Analogy with how Navier Stokes is obtained from Boltzmann
(Chapman-Enskog?)

Chapman-Enskog

Boltzmann = Euler + O(¢)

= Euler + ¢ (“viscous effect/diffusion”) +O(&?),

=Navier-Stokes
where ¢ is the Knudsen number.
Can we apply this approach to kinetic models in order to introduce viscous
effects?
1) Define a Knudsen Number e
2) Write an asymptotic expansion for e < 1 (# study the limit when ¢ — 0)
3) Identify the O(e) terms as diffusive terms.

4s. Chapman, T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 2nd edition (Cambridge
University Press, 1953).
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Knudsen number for kinetic methods

1) Definition of the Knudsen number
OF A oF 1

X

— =-(M-F
8t+ ox ‘r( )
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Knudsen number for kinetic methods

1) Definition of the Knudsen number
OF A oF 1

X

— =-(M-F
8t+ ox T( )

Scaling: let’s consider a characteristic problem size ¢ and a characteristic velocity
a=|[|Axl.

. L. X A
tf = — x* == /\)’;:g
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Knudsen number for kinetic methods

1) Definition of the Knudsen number
OF A oF 1

X

— =-(M-F
8t+ ox ‘r( )

Scaling: let’s consider a characteristic problem size ¢ and a characteristic velocity

a=||Axl.
A
o8 X
)4 l a

A-Dimensioned kinetic system:

oF oF 1
A =-(M-F
ot T Mg = 2 )

Definition of the Knudsen number for BGK

_ar

4

€

Note: In the kinetic theory of BGK gases, ¢ ~ c7/¢, where c is the speed of sound, characteristic
of molecular agitation.
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Chapman-Enskog

2) Asymptotic expansion for ¢ < 1
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Chapman-Enskog

2) Asymptotic expansion for ¢ < 1

ot* ox*

oM oM
- M — * o) 2
5(at* + Xax*) +0O()

Hence
() | B(ma(u))

PAKF = f(u) — 7 (Tr o

) +0(?), my=PA2M

(chain rules)

PAxF = f(u) + 7 [(f'(u))2 = mé(u)] % +0()
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Identification of the diffusive terms

3) Identification of the diffusive terms

OF OF 1
A = Z(M—F
ot T ™Mox T T( )

Apply P and replace PAxF by its asymptotic expansion:

ou  ofu) 9

at | ox *5(T[mz() (f’(U))Z] )+0( )

Target equation:

8—"—1— of(u) 0 (D@
ot ox ox

— ) , D : diffusion matrix
ox

b
my(u) — (' (u))?

Identification for a scalar problem: = =

But it is not possible to do that in general.
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Idea: Relaxation matrix

How can we introduce new parameters to control the O(¢) term in the general
case?
Idea: Introduction of a relaxation matrix

oF oF
AN —QM—F
ar T Max ( )

¢ Conservation condition: PQ(M — F) = 0.
» Choice of a block matrix: Q = Id, ® Q.

Example: Navier-Stokes 1D, 2 wave model

D —— a [P g [P 3 Mi — p1
F E | h | tac | i) = My —j |
’ 1 ot \ E, x \E ij - E

M2 —

P2 p2 P2

(Z‘) aé Jo —&'82 | =2 M% —f2 |-
Eq t E; X \E Mgz - E
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Relaxation matrix: identification of the diffusive terms

1) Define a Knudsen number ¢,
2) Perform an asymptotic expansion for ¢ < 1,
3) Identifiy the O(¢) terms as diffusive terms.

at ' ox  ox

ou  ofu) 0 (Q_1 [m’z(u)f(f’(u))ﬂ 5) +0(e?)

Target problem:

du  of(u) 9 (D@
ot ox ox

— ) , D : diffusion matrix
ox

Condition on the Q matrix

o '-p [m’z(U) - (f’(u))z] T e %

—_——
invertible when a > |(f)’ (u)|

Note: In the kinetic theory of BGK gases, ¢ ~ c7/¢, where c is the speed of sound, characteristic
of molecular agitation.
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Discretisation
Crank Nicholson, 1D, and Q2 = Id to simplify

Fr+1 —Fn n 1 SxFMt 54Fn 1 MPF™ _ F1 4 MPF? — F7

At 2 ox ox 2¢e
Difficult to solve, but one can expect second order in time, and space (dx), uniformly in
.
Define

n
12(F) = Fpry AU (0F 0PN AL Cpe R R
2 \ ox X 2¢

amounts to solving L2(F) = 0.
Introduce L'
oxF" _ At

L'(F)=F—F"+ At—=— —<MP’F7F+MPF”7 F”)
24 2¢e
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Discretisation
Crank Nicholson, 1D, and Q2 = Id to simplify

Pt =P 1(SET 0T T (et _ o + MPF" — F"
At 2 ox ox 2¢e
Difficult to solve, but one can expect second order in time, and space (dx), uniformly in
.
Define

n
12(F) = F—Fn 4 DL (2F P A (MIP’F F + MPF" — F”)
2 X ox ) 2e

amounts to solving L2(F) = 0.
Introduce L'

oF" At
LY(F)=F - F"+ At—= <
(F) tAl - —

MPF — F + MPF" — F”)
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Discretisation
Crank Nicholson, 1D, and Q2 = Id to simplify

Fn+1 —F" 4—‘1 ((S)(Fn+1 6xFr7) _ 4]7 (RmeFn+4 _ Fn+4 + NﬂﬂpFn _ Fnj

At 2 6x X 2e
Difficult to solve, but one can expect second order in time, and space (dx), uniformly in
E.
Define

[3(F):=F—F"+ At

: (g N 6XF”) At

= ( MPF — F + MPF" — F"
6x 6x 2¢

amounts to solving L2(F) = 0.
Introduce L':
oxF™ At

- — (MPFf F + MPF" — F”)
ox 2¢e

L'Y(F)=F —F"+ At

and note that L' (F) — L2(F) = O(At)
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Discretisation
Crank Nicholson, 1D, and Q2 = Id to simplify

Fn*4 —-F 4_‘1 ((San+1 6XF”) _ 4], (RmeFn+4 _ Fn+1 +>NMH)FH _ Fnj

At 2 6x X 2e
Difficult to solve, but one can expect second order in time, and space (dx), uniformly in
E.
Define

[3(F):=F—F"+ At

: (g N 6XF”) At

= ( MPF — F + MPF" — F"
6x 6x 2¢

amounts to solving L2(F) = 0.
Introduce L':
oxF™ At

- — (MPFf F + MPF" — F”)
ox 2¢e

L'Y(F)=F —F"+ At

and note that L'(F) — L?(F) = O(At) independant of
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Defered correction technique

If

for some norm ||L' — L2|| < CAt, L?(F) = 0 has a unique solution F* and
IL"(F) — L'(F")|| > ant
Consider F©) = F" and define F(Pt1) as

A (F(p+1)) — ! (F(P)) _ 2 (F(P))
Then, independently of e

IF* — F®) < CAP|F® — F*|.

af[FPHD — F|| < |IL(FPHD — L'(F*)|| = [|[L" (F®)) — LA(FP))] — [L'(F*) — L2(F)]]|
< CAt [P —F¥|

Last question: How to solve L' = 0?
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How to solve L' = 0?

oxF At
F=F" AtA—t + % (M]P’F F + MPF" — F")
Apply P:
BF — pF7 — ArEF
At
then

—1
F=uw"' (F”+Atﬁ) oAt (MPF+MPFMF")
At 2¢e

where w = (1 + 1) so that
w At At
2  At+2¢
Note: L' (F(P+1) = L1(F(P)) — L2(F(P)) writes

F(p+1) _ Fn _ E (6XF(P+1) N 6XFn> At
- 2 5x 5x 2¢

(MPF(P+‘) FPH) | MPF" — F”)

so we can do the same directly on the iteration.
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How to solve L' = 0?

oxF At
F=F" AtA—t + % (M]P’F F + MPF" — F”)
Apply P:
BF — pF7 — ArEF
At
then

—1
Few! (F”+Atﬁ) oAt (MIP’FJerPF” - F”)
At 2¢e

where w = (1 + 1) so that
w At At
2  At+2¢
Note: L' (F(P+1) = L1(F(P)) — L2(F(P)) writes

F(p+1) _ Fn _ E (6XF(P+1) N 6XFn> At
- 2 5x 5x 2¢

(MIP’F(”*‘) FP+1) 4+ MPF" — F”)

so we can do the same directly on the iteration.
This generalises to other type of temporal discretisation, see Notes.
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Spatial discretisation: (dxw); = fii1e 10

Ref: Iserle, IMA J. Numer. Anal., vol 2, 1981

First order approximation:
1

fia1/2 = 5 (W + wiq +sign (B)(wj1 —wy),  sign(a) = &

Second order:

1 — sign (a)

foio= 1+ sign (a)
/2 = 12

> (2Wj41 + 5w — wj_y).

(2w +5wj1 —wji2) +
Fourth order: for 51 (centered),
i Wjt2 3 Wi_4
12 = a(i + Wi+ W+ =L )

for 62 (upwind biased),
M 1 — sign (a) <Wj+3 5 13 w,)
f: = | = - — w,
/2 2 12 it plin Tty

1+ sign(a) (Wit 18 5 Wj_2
Tt 4 TR Rt )
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Stability analysis, 2 = Id

Operator 54 8o 51 63
Symbol g 1—e— 10 —e’9+1fe*i9+1e*2’9 i(isin(29)+isin 0) e—le+gf—e*"9+le’2m o
2 6 6 3 4 6 2
Table: List of Fourier symbols.
Scheme # iterations
Order ¢ 1 2 3 4 5 6
2 01 1 1 1 1 1 1
2 do 0| >085 | >1.22 >1.02 >1.08 >1.23
2 6% 0 0 >1.45 >1.45 > 0.002 > 0.01
2 oy 0 >0.5 > 0.69 0.71 0.73 0.73
3 01 6 >15 >1.87 >2 >223 > 2.48
3 0o 0 0 1 >2.0447 | >2.17120 > 2.568
3 6% 0 0 0 >1.6171 > 2.4727 > 2.9162
3 W 0 0 > 0.1 > 1.3096 > 1.3955 > 1.8282

Table: CFL number for stability of the DeC iterations. 0 means that the scheme is unconditionally

unstable. If a real number x is given, it means that the scheme is stable up to CFL x, if > x is
written, this means that the scheme is stable for at least CFL x (and slightly above indeed).
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When introducing Q which is not necessary invertible

Arbitrary order numerical method (Abgrall & Torlo, 20205):

e First order in time and space: implicit-explicit upwind
» linear stability: a{t < 1

e 2nd order in time/space: Deferred Correction (DeC)
> linear stability: a5t < 0.87

e 4th order in time/space: Deferred Correction (DeC)
» linear stability: a% < 1.04

These schemes use © ' and not €.

e Asymptotic preservation (AP): when o' = 0, consistancy with the hyperbolic
system (D = 0).

» Example: Euler: @ =0

o © " may no be invertible.

B 0 0 O
» Example: Navier-Stokes : Q = [— — —

5R. Abgrall, D. Torlo, SIAM Journal on Scientific Computing 42, B816—-B845, 1ISSN: 10957197 (2020).
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Overview

® Numerical examples, 1D
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Validation: linear acoustic propagation

u(x,0) = T+ |0 cos(2mx + $(0)), 0] < T,

p=1, P=1, Ma=2, ~=14, Pr=0.71,
Uexact (X, 1) = U + |01] cos(2mx — Re(w)t + (@)™

100 | —— 1% order

—a— 274 order

—— 4" order

1078 .

10-10 L
1

Figure: (@): p = 1073, ~ 1.6 1072, a= 1.1 max(|u] 4+ ¢), (b):p = 1073, =~ 1.8107%,
a=10 max(|u|] +¢), (c):;p =0,e =0,a= 1.1 max(|u| + ¢)

e Expected convergence order
e Observed Plateau =consistency error when e (e = p/(at))
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Validation: linear acoustic propagation

Error convergence study, function of =
Same test case with

N = 1000, u=0.1, 4th order scheme

(aim: avoid numerical errors)

a/ max(|u| + ¢) € K r
1.1 0.16 | 4.6585 10~ 7 -
2.2 0.08 | 2.802810—* | 0.73
4.4 0.04 | 9.733610~% | 1.53
8.8 0.02 | 2.582610~° | 1.91
17.6 0.01 | 6.539310-% | 1.98
35.2 0.005 | 1.6399 106 | 2.00

o We observe a consistency error in O(?)
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Validation: viscous shock

Viscous shock:

Ma = 2, w=0.001, Pr=3/4, y=1.4
N = 10 points in the characteristic shock width.

Why this test case: analytical solution of NS.

0.20 | 0.20
0.15 - 0.15
5
0.10 | % 0.10
'4
"P
0.05 —— Exact 0.05 d —— Exact
- 1st order —>- st order
- 2nd order ~<- 2nd order
0.00 - 4th order 0.00 &= 4th order
L L L L L L
—0.01 0.00 0.01 —0.01 0.00 0.01
(a) (b)

Figure: (@): @ = 1.1 max(|u| + ¢) (¢ = 0.16), (b): a = 10 max(|u| + ¢) (¢ =~ 0.017)
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Overview

@ Generalisation of multi-D
Moment space
Regularisation
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Example: relaxation matrix in 2D

Writing a 2D matrix-relaxation kinetic model:

oF oF OF _M-—F

=Q
ot A *ox A y@y €
Target model: advection diffusion.
— — +D
at ' ox x> X ay)

ou  of(u) Bg(u _ (
0 ou
"oy (Dy* ox Dyy?y)

With respect to 1D, 2 difficulties:
o How to take into account the terms (Dxy and Dyx)?

e How to construct a relaxation matrix Q that satisfies the conservation condition:
PQ(M — F) =07?
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Description in the moment space

Idea : Rewrite the problem in the moment space

Definition: Moment matrix

P = M O OEE Q: square invertible
Q- PAx < moment of order 1 r-na(tlrix (kp x kp)
| PAy < moment of order 1 P x 1
H <« high order moments

H: this matrix is constructed arbitrarily in order to make Q a square and invertible
matrix.

Proposition

If M is a linear function of the (u, f(u), g(u)), then one can choose H so that HM = 0.

In the following, we assume that HM = 0.
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Example: 4 waves model

f(u)

u 1 |-
Ax = disg(a, ~a,0,0), A, =diag(0,0,3,-a), M =15+ gf((u“))
—g(u)

One can choose the following moment matrix:

1 1 1 1

a -—-a 0 0
Q=19 o a -a

&# P& -2 -&

One can check that:
QM = [u, f(u),g(u),0]".

Note: H= (¢ & -2 -—a?)=P(AZ— A2): this justifies the denomination "high
order moment".
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Relaxation matrix in the basis of moments

We choose to describe the relaxation matrix € in the basis of moments as
aldp 0 0
="' 0o c o0 |a
0 0 pldp
where
e «,f € R are two parameters to be defined,

e Cis a (2p x 2p) square matrix to determine.
With this choice, we have

PR=aP = PQM—F)=aP(M—F)=0.

o How to take into account the terms Dy, and Dyx?
e How to construct a relaxation matrix 2 such that: PQ(M — F) = 0? v/
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Construction of the relaxation matrix (2/2)

e Asin 1D, the Knudsen can be defined as:

|ID|

al
e The 1st order terms in ¢ can be identified as diffusion terms when
_ - PAZM'(u)  PAcA,M’(u)
1 _ o 1 _ X Xy
c — D(J/\ JI) ) J/\ — (]P’/\X/\yM'(U) P/\EM/(U) )

_(fP rugw
= (ruigw s )

» Asin 1D, Jx — Jy is invertible if a > max (p(f/(u)), p(g’(u))).

e The parameters a and 3 play NO role in the expansion at 1st order:
> « never play a role
» 3 would play a role for higher order expansions
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Regularisation

As in 1D, the matrix Q2 appears only via its inverse:

1/oldy 0 (]
Q'=q (] c—! 0 Q

0 0 1/8ldp

Regularisation inspired by regularised LBM (Latt 2006 (8))
“1/a = 0",“1/8 = 07, and then:

0O 0 O©
Q'=0'=@'"(0o ¢! o]a
0 0 O
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Effect of regularization on high-order moments

The kinetic system is written as

OF oF OF
AN —QM-F
ot TN 8x+y6y ( ):

or, equivalently :

F F F
Povimat (e, )

+A
ox Y oy
Multiply on the left by H (high-order moment matrix):

oF OF OF
HF = HM — HQ Ax A 0
~ \\g/(8t+ ax+'yay)

Principle of regularization: filter out high-order moments
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Numerical schemes for Navier-Stokes

e Numerical methods similar to those presented in 1D: orders 1, 2 and 4

Method used in the following: 4-wave system (~ D2Q4), with regularized
relaxation matrix

e a=2.1max(u+ c, v+ c) (existence of an entropy)
e Kinetic system equivalent to a Jin-Xin system with relaxation matrix:

g9 (U 0 0 0 g (U 0 0 0 g (U
— v | +[&/2 0 o] = (vx|+| O 0 Of_—[wx
ot \y, 0o o o \y 2/2 0 0) W \y,

0
o)

» Memory cost reduction
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Overview

® Numerical examples
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Scalar case, no viscosity

Consider the two-dimensional advection equation:

ou ou ou
— 4+ —4+—=0 t —2,2] x [-2,2] x RY
6t+8x+8y » (y, 1) €[-2,2] x [-2,2] x RT,

and periodic boundary conditions. We consider the following initial condition:
UO(va) = sin(7rX + 7Ty), (va) € (_27 2) X (_272)

The CFL number is set to 1. The convergence for the density is shown in Tables 3 and
4 for final time T = 10 for orders 2 and 4, which result in the predicted convergence
rates of second and fourth order, respectively.
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Scalar case, no viscosity

Table: Convergence study for the advection equation for order 2 at T = 10.

h LT-error slope [2-error slope L°°-error slope
0.05 1.0698.10T - 2.8479.10° - 9.3878.10~ 1 -
0.025 3.5595.10° 159 9.6212.10~' 157 3.3039.10~'  1.51
0.0125 6.8578.10~1 2.38 1.8812.10~1 2.35 6.5662.10—2 2.33
0.00625 1.4701.10~1 2.22 4.0558.10~2 2.21 1.4243.10—2 2.20
0.003125 | 3.4890.10-2 2,08 9.6578.10—% 207 3.4037.10~3 207
Table: Convergence study for the advection equation for order 4 at T = 10.
h LT-error slope [2-error slope L°-error slope
0.05 4.7601.10° - 1.2919.10° - 4.1702.10~ 1 -
0.025 3.1678.10~" 3.91 85482.10~2 3.92 29212102 3.84
0.0125 1.8698.10—2 4.08 5.1232.10~3 4.06 1.7850.10—3 4.03
0.00625 1.1427.1073 4.03 3.1527.10~4 4.02 1.1072.10~* 4.01
0.003125 | 7.0804.10—5  4.01 1.9599.10~°  4.01 6.9070.10-%  4.00
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Euler case, smooth case

Vortex, periodic conditions

The initial conditions are given by

p:[17(771)52 ENEE

1—r2 2 1—r2
vx—1—iexp< - )(y—yc),vy—f+6exp< : )(x—xc),

2

where y = 1.4, 8 =5and r = \/(x — xc)2 + (¥ — yc)2. The computational domain is
a square [—10,10] x [—10, 10]. Also, the free stream conditions are given by:

V3
Poo =1, VX,oo:17 Vy,oo:77 Poo = 1.

43/64



[

(a) 4-th order scheme in space and time (b) Exact

Figure: Plot of the pressure for the vortex problem at T = 5.
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Figure: Convergence plot of density for the fourth order scheme in space and time at T = 5.
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More

In order to illustrate the long time behavior of the scheme, we show the pressure for

T = 200 and the error between the computed pressure and the exact one on Fig. 5
and a 200 x 200 grid. Note that the typical time for a vortex to travel across the domain
is about 10.

(@) p (b) error

Figure: Pressure and error between the computed solution and the exact one at T = 200 on a
200 x 200 grid. We have p; ; — pf € [-4.2107%,1.6 107°).

46/64



Strong shock

The problem is defined on [—1.5,1.5] x [—1.5,1.5] for T = 0.025. We had to use the
MOOD technique to get the results, the shocks are too strong.

,0,1000) ifr<0.5

1,0
(p()va,Ovvy,Ova):{ 5170, 0,1) else. (13)
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Validation: isothermal Couette flow

Initial conditions:

p0:17 (U,V)():(0,0), P0:17
v=14, Pr=073, u=001

Isotherm wall condition (lateral walls):

[u, v, T]L =1[0,1.3y/7,1], lu,v, T]lg = [0,0,1].

— Exact

-&- 2nd order

1.00 —#- 4th order
L

L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

(a) 1storder (b) 2nd, 4th order with N = 8 points
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Validation: Couette flow, adiabatic walls

Initial conditions:

p0:17 (U,V)():(0,0), P0:17
v=14, Pr=073, =001

Left wall, adiabatic

1.30 Fog. 130 F

1.25 B a, 1.25

1.20 1.20

&~ 1.15 & 115

1.10 1.10
—— Exact

1.05 105 ~&- 2nd order
—&- 4th order

1.00 1.00 £ L 1 1 L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x T
(c) 1storder (d) 2nd and 4th order with N = 16 points
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Shock-boundary layer interaction

Left: reference solution (Daru & Tenaud, 20098, OSMP7), right: kinetic method 4th
order, (4000 x 2000) points.

0.2 0.2

0.0

0.8 0.9
0.7 0.8 X 0.9

(e) Ref: Temperature, Re = 200, t=0.6 (f) Temperature isolines, Re = 200, t=0.6

0.2

0.1

0.7 0.8 X 08 .
(9) Ref: Temperature, Re = 1000, t=0.6 (h) Ref: Temperature, Re = 1000, t=0.6

6V. Daru, C. Tenaud, Computers and Fluids 38, 664—676, ISSN: 00457930 (2009).
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Shock-boundary layer interaction

Left: reference solution (Daru & Tenaud, 20097, OSMP7), right: kinetic method 4th
order, (4000 x 2000) points.

05 06 07 XO»G 09 0.5 0.6 0.7 0.8 0.9 1.0

(i) Ref, Temperature, t=1,Re = 200

05 08 07 038

X
(k) Ref: Temp, =1, Re = 200 () Temperature isolines, =1, Re = 1000

7V. Daru, C. Tenaud, Computers and Fluids 38, 664—676, ISSN: 00457930 (2009).
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Shock-boundary layer interaction

Localisation of the lambda shock:

—— Re = 1000
I

0.5 =L
0.4 0.6 0.8

(m) (n)

(Symbols : Reference solution Daru & Tenaud®).
Very good qualitative agreement

8V. Daru, C. Tenaud, Computers and Fluids 38, 664—676, ISSN: 00457930 (2009).
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Skin friction, Re = 1000

OSMP?7 (3000 x 1500)
OSMP7 (4000 x 2000)
RK3-WENOS5 (3000 x 1500)

e e e NI e s e e s e e

—— Kinetic (4000x2000)
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Flow around a cylinder

Flow at Mach=3

Note : "Staircase" boundary conditions on the cylinder. To be improved ...
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Flow around a cylinder

Euler (1 = 0), Mach=100
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Overview

® Conclusion
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Conclusion and outlook

e |tis possible to develop robust and accurate numerical schemes for compressible
Euler. Can be arbitrary accurate. Run at CFL> 1.

e Show how to develop kinetic schemes for advection diffusion/Navier Stokes that
can be arbitrary accurate.

e Show the properties, in particular consistency. Ru at CFL ~ 1.
e Show preliminary results for high Mach number flow problems
e Must improve boundary conditions (in progress). Heat flux ??

e Can be used for unstructured/polygonal meshes, starting from a scalar convection
solver.
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First order Kinetic scheme

First order scheme (Abgrall & Torlo, 2020° ):

e Spatial approximation on Cartesian meshes: 9/9x — 6)((1)/Ax (upwinding)

dF sOF
= = A 4 Q(PF) [M(PF) — F
i oy T SUPF) [M(PF) — F]

e In time: implicit/explicit
» Transport: Explicit Euler, first order
> Relaxation: Implicit Euler, first order

At

Fn+1 —F_ =
AXx

ASFT + ALQ,. [Mn+1 - F"+1]
The implicit scheme can be made explicit in 2 steps:

At
(1) u™=PF =" — H19>/\X5X(1)F"

_ 1 _ At
(@ F™' =(Q, + Atld) {Qn ! [F" N

+ AX6X(1)Fn] + AtMp 44 }

9R. Abgrall, D. Torlo, SIAM Journal on Scientific Computing 42, B816—-B845, 1ISSN: 10957197 (2020).
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Arbitrary order kinetic scheme (1/3)

Arbitrary order scheme (Abgrall & Torlo, 2020'°):

e Spatial approximation on Cartesian meshes: 9/9x — 5)((")/Ax (spatial
approximation of order q)

dF 5OF
— = Ay
dt Ax

+ Q(PF) [M(PF) — F] := F(F)

e Intime: Try to use implicit Runge-Kutta of order g, with s sub-iterations: Butcher
tableau A € Ms(R):

. oA (1/2 —1/2
Example : Order 2, Lobato llIC: A = (1/2 1/2 )

Problem: implicit scheme difficult to solve. ..

10R, Abgrall, D. Torlo, SIAM Journal on Scientific Computing 42, B816—-B845, 1ISSN: 10957197 (2020).
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Arbitrary order kinetic scheme (2/3)

Idea: Deferred correction (DeC, CITE)
o We define a "high order" operator £2:
C2B)=B—F" 4 %A Ao F — AtAQ(PF) [M(PF) — F] .
The scheme writes: £2(F) = 0.

Difficult problem
o We define a first order scheme 1, £, easier to solve:

L'E)=FE—F"+ %c Ax6{VF — AtAQ(PF) [M(PF) - F]

where C is a matrix associated to an explicit RK scheme. This can be solved explicitly
as for the first order case above.
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Arbitrary order kinetic scheme (3/3)

Principle of DeC:

1) Define : F© = F,,.
2) lterative solution

£V (FPH)) = L1(FP) — L2(FP).
3) After q iterations, F(9) approximates F(t,, 1) with order q.
We get
N N At o N .
(1) AP =" — = APAGPFP), (P = pFP),

~ —1 A
@ Be+D =o' [0 1 Aad] (F" _ %A/\M;((q)F(p))

=1
+ AtA [Q—‘ 4 AAt} M(GP+1)
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1st, 2nd and 4th order scheme

1st order: upwind

At
Linear stability: a— < 1.
Ax

sWEp_ JFk—F—1 sia>0,
X 7 \Fkyr —Fx  sinon,
2nd order
s@F — JFei1/8+Fk/2—F_1 +F /6 ifa>0,
X —Fx_1/3 —Fx/2 4+ Fxy1 — Fri2/6  else.
_ (12 -1)2 . LAt
A= (1/2 1/2 > S linear stability: aa < 0.87.
4th Order:

5(4)7 Fk+1/4+5Fk/673Fk,1/2+Fk,2/27Fk,3/12 ifa>o0,
x _Fk—1/4 - 5Fk/6+3Fk+1/2 - Fk+2/2 + Fk+3/12 else,

1/6 —1/3  1/6 At
A=1|1/6 5/12 —1/12|, linear stability: a— < 1.04.
1/6  2/3 1/6 Ax
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