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Introduction

Introduction

Sprays

o Non-gaseous dispersed phase of small volume
fraction (e.g. droplets or dust grains) in an
underlying gas.

o Examples : clouds, diesel engine, medical
aerosol, cosmic dust, dispersion of pollutants,
impurities in a Vacuum Vessel (ITER)...

o Their study is a sub-field of the study of

. articles (droplets, dust specks...)
multiphase flows. ’ ¥
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Introduction

Models for gaz-particle flows

Hypothesis

o Number density in particles < compared to number density in molecules.
e Radius of dust particle > radius of gas molecule
= various time and length scales...
.
Differents possible description
Dust microscopic mesoscopic macroscopic
Molecules P P P
. . mixture of
microscopic .
particles
kinetic
mesoscopic equations fully kinetic
with particles
fluid e
. we fluid-kinetic two phase
macroscopic equations .
. . models fluid
with particles
v
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Introduction

Models for gaz-particle flows

Fluid-kinetic modelling
o Gas described by p4(t, x), ug(t, x), p(t, x)

o Kinetic equation for the particles
F(t,x,v,r) : number of particles of position z, velocity v, radius r

o Classification of sprays [P.J. O’'Rourke]
4
Volume fraction of particles : 1 — a(t,z) = // §7rr3F(t,x,v,r)dvdr

> 1 —at,z) < 1072 : very thin spray. Coupling from fluid to particles but
no retroaction from the particles to the fluid

> 1—a(t,z) < 1: thin spray. We take into account retroaction of particles
on the fluid

> 1—at,c) ~0.1: thick sprays
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Models for gas-particle flows
Fluid-kinetic modelling

@ Forces exerced on particles

> Drag force : Stokes drag force on a sphere on a viscous laminar (R, < 1)
fluid
‘Fd(t7 T, v, 7") = 67T[L7"(Ug(t, '1") - U)

or more generally
Fa(t,z,v,1) = D(ug(t,z) —v) or Fa(t,x,v,r) = Dlug(t,x) —v|(ug(t, ) —v)
> Pressure force on a spherical particles
Fp(r) = fgm"g’vzp, p: gas pressure

e Vlasov equation for particles

1
OF +v-V,F+—V, (f"dJr Fp )F = Q(F, F)
m(r) ~—~ N——
often neglected often neglected
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Introduction

Models for gas-particle flows

Fluid-kinetic modelling

o Fluid equation for the gas, for example :
> Navier-Stokes equation for a viscous incompressible gas

" Fal(t
Orug + (ug - Vx)ug—&—pg Vaep—vAgug = — #F(/ x, v, 7)dvdr
m(r)pg
with Vg -ug = 0.
> FEuler equations for a compressible non-viscous barotropic fluid, for very
thin or thin sprays

Otpg + Vo - (pgug) =0

Fa(t,x,v,7) .
00 (pgig) + Vi - (pgug ® ug) + Vap(pg) = // Im(, r F(t,z,v,r)dv
9
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Introduction

Models for gas-particle flows

Fluid-kinetic modelling
o Fluid equation for the gas, for example :

> Case of thick sprays

O(apg) + Va - (apgug) =0

Falt
00 (apgug) + Vg - (pgug @ ug) + aVap(pg) // [m()’ /I) r) F(t, z,v,
g
1— a(t,z) = // %m‘:gF(t,x, v, r)dvdr
J o - J
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Models for gas-particle flows
Exchange of internal energy in fluid-kinetic models
(cf code KIVA of Los Alamos)

o F'=F(t z,v,1 ep), with e, internal energy

o We assume that particles have a temperature given by a law
Tp(t, z, ep) = T(p(ta .’b), ep)
e Vlasov equation for particles

D 1
atF +v- VIF + Vr <7’n(’l‘)(ug(t’ 'T) - U) - vazp(tvx)F>

+ 0., (C(T, ~ T,) + .....)F) = Q(F),

e Equation of energy in compressible Euler equations
1 1
& (O‘pg(eg + 2|u92)> + Ve - (apg(eg +p)ug + ap92|ug|2ug> + pgpdi

= — /// (C(Ty — Tp) + D(up — ug) - up) F(t,z,0,ep,r)dvde,dr
—




Outline

Objectives

Derivation of the terms corresponding to internal energy exchanges in a
Vlasov-Euler model, starting from a kinetic model.

Summary
O Introduction
© Fully kinetic modelling
o Kinetic model
e Asymptotic to a Vlasov-Boltzman model
© A model with internal energy exchanges
e Modified collisional operators
e Asymptotic to Vlasov-Euler model
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Fully kinetic modelling [i€STE13{seT Yo 1SN

Collisional model

f(t,z,w) : density function of the gas,
F(t,z,v) : density function of particles (no dependance on r to simplify)

neglected
oF
oy TUVaF =D(F.f)+ CHJ
%{+w.vxf:7z(}?,f)+@(f),

D(F, f) and R(F, f) describe molecule-particles interactions
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Kinetic model
Collision operator Q(f) for molecules

Collisions between molecules : binary, elastic. Q(f) is the classical Boltzmann
operator for monoatomic gases :

0w = [ [ ()t = fw) )] e = w. . cos(a)dde

with
(w// //):(w+w* |w — w,| U)+’U)*_ |w — w,|

) 2 2 9 2 2 0')

Properties of Q(f)
1 0
[ e | w Jaw=(o
® Jwl® 0

Equilibrium
pgmg/2 _mglu—ug|?
A(f) =0« f(w) = Mlpg, ug, 0,](w) = We et
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Kinetic model
Collisional operators D(F, f) and R(F, f)

o First possibility : elastic collisions (specular reflexion)

e Second possibility : diffuse reflexion

Hypothesis : dust particles have the same constant temperature of
surface 7T),.

\
\

\

1
\"i Density of probability of the post-collisional re-
- lative velocity :

molecule

Surface of the dnst

at the temperature T'

1 m?2 _mglvl?
/I p

I
Consequences :

> Kinetic energy not conserved,
» Non planar, non microreversible collisions.
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Kinetic model
Collisional operators D(F, f) and R(F, f)

mglv —w \2 m \'ufw\2
DYE, f)(v _ng/Rs /]R3 /Sz |:F’U e BT, — F(v)f(w)e 5Ty }

mg|v— w\

X e 2kpTp g(U — w,n)hn(z)dn dz dw

and
mg\ v —w! |2 mglv—w|?
RYF, f)(w) = O'gp/ / / F') Ty — F(v)f(w)e 287
r3 JR3 Js2
_ mglv— wl?
xe BT ¢(v—w,n)h,(z)dndzdv
o hard sphere collision cross section : ¢(v —w,n) := [n - (v — W] {p.(v—w)>0}
Mmpv + Mew m
U/ = P " g9 _ +g 2,
my +m mg +m
@ post-collisional velocities : b g g P
;. MpV + mgw mp .
mg + my Mg +my
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Kinetic model
Collisional operators D(F, f) and R(F, f)

Conservation of momentum

my [ PHE D) () dotmg [ RYE ) () do= (0],

but
my [ DUE DI+ my [ RUE )@ 20

Entropy dissipation

(mg+mp) mg‘w‘
/ fw)ln <f( e me BT ) dwdzx
R3

R3
(mg+mp) mp|v|?
Fw)e ™ %57 | dode,
R3 ]R3

G HF ) <0
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Fully kinetic modelling Asymptotic to a Vlasov-Boltzman model

Asymptotic to a Vlasov-Boltzman model

Collisions, for the point of view of a particle

The post-collisional velocity v’ of the particle after a dust-molecule collision

verifies
/ Ul

v V= ——
1+n

= small change of velocity, analogous to grazing collisions!

(w—2z—v), n::@«l
mp

Hypothesis for the dimensionless system

o the thermal speeds of gas molecules and particles are of the same order of
magnitude

o the ratio of density between particles and molecules is identical to the
mass ratio between molecules and particle : N,/Ny; =17
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Fully kinetic modelling Asymptotic to a Vlasov-Boltzman model

Asymptotic to a Vlasov-Boltzman model

Dimensionless system

oF 1
EJ’_U VF_n T](F7f)7
W Vaf = Ry(F D) + 500,

with 6 = i]%‘i is the Knudsen number K,,.

Weak form of the operator D, (F, f)

[, PulP D@ty
~ [[[[ 166~ e@N F@ w500~ w,m)ha ()2 dn dw v,
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Asymptotic to a Vlasov-Boltzman model
Asymptotic to a Vlasov-Boltzman model
Formal asymptotic expansion of D, (F, f)
We have
Dn(va) = Ua(Fyf) +O(772)7

with, in the case of diffuse reflexion

a(F, f)(v) =7V, - (F(U) /}R3 <|w — |+ -~ 27TTP> (v — w)f(w)dw)

36

Vlasov-Boltzmann system

%—ZZH V.F+V, - (F(v,T)I'(F, f)(v)) =0
o
8{+w V.f = RYF, f)+5C(f)
with

R3

RI(F, f)(w)i(w)dw = / [+ 2) = ()] Fv) f(w)s(v —w,n)hn(z

)dzme

= =

F. Charles
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A model with internal energy exchanges

Summary

© A model with internal energy exchanges
@ Modified collisional operators
e Asymptotic to Vlasov-Euler model
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A model with internal energy exchanges Modified collisional operators

Internal energy in the function F

With the previous model : no conservation of kinetic energy during a
dust-molecule collision

mp|vl|2 + mg‘wl‘Q # mg|v|2 + mp\w|2
We introduce a variable 7" in the density of particles :
F(t,z,v,T)

Post-collisional temperature : 7" is given by the relation of conservation of
energy

1

1 1 1
§mp|vl|2 + §mg|w/|2 + CpmpT/ = §mp|v|2 + §mg|w|2 + cpmpT’
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Modified density

Previously : z = w’ — v given with the density of probability :
Yy

1 m

hnr(v) = by ENE (n-v)e 5T Lip,50)

2
mg"”|

Post-collisional velocity T/ =T + 26 1+n [[v—w|?> = v/ —w'[?], (with

n="mg/mp).

Modified density function of post-collisional relative velocity :

~ 1
B o0, (2) = mhn,T(Z)ﬂ{\ng\u—wwwcp%:r}(2)7
where
Ho w1 = b,z ( )]l{|z\2<\y w|2+2cp1+"T}( )dz
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A model with internal energy exchanges Modified collisional operators

Collision operators

D(F, f)(0,T) = T2 / [F(v',T’)f(w’)Le‘%lv—wP
27(']{5 S2 xR3 xR3 ,HvﬂwﬁmT’ T/2

F(o,T 1 ma g,
_ %ﬁe 5T Iz] Tirrs0ys(2,n)s(v — w,n)dn dz dw,
v,w,n, T
(similar expression for R(F, f)), with
e W /T S
1+mn 1+mn 1+mn 1+n

and

L
P

Conservation of mass, momentum and total energy

1 1 0
/ D(F, f)(v,T) o dv dT+ / RE, f)(w) [ mgw | dw= (0
mp‘ ol +cpm,T mg |w2‘ 0
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Asymptotic when n — 0
Same assumptions as previously, and we assume that the ratio between the

kinetic temperature of the gas and the temperature of surface of dust particles
does not depend of § or 7.

Dimensionless weak form of D(F, f)

//Rs Dy(F, f) (v, T)p(v, T)dvdT
- ///// (v, T") = @(v, T)] F (0, T) f(w)s(v = w, 1)l 0,0,.7(2)dz dn dw do

v

Proposition
The following asymptotic expansion holds :
hn,0,00,70(2) = B, 7(2) + 0(0).

More precisely, the o holds in L!(R?), uniformly with respect to the
parameters n, v, w,T.
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Asymptotic when n — 0

Asymptotic expansion of D(F, f)

Dﬂ(Faf) = na(F,f) +O(772)’
with

a(F, f)(v, T)=7nV, - (F(v,T) /}R3 <|w —v|+ 27TT> (v— w)f(w)dw)

35
o (10~ 170 Flo1)|.

where we denote

Ipq(t,z,v) ::/ |lw—vl|f(t, z,w)dw I s(t,z,v) ::/ |w—v|3f(t,x,w)dw.
R3 R3

F. Charles
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Asymptotic when n — 0 and § — 0

If (f°, F°) is a solution of the previous system, then (at a formal level)
f° — Mng,uy, 0] when § — 0.
We introduce, for a € R? :

(@ :=/ (a- >|a—y|e”2'2(d)yg,/2,

12
/\a—y\e 2 W,

g3(a) :== /Rs|a* y|’e - @ :513/2'

The function ¢ can be expressed under the following form ¢(a) = a §(|al|).
Moreover, we observe that it is possible to write, for some smooth functions
(jOa q&’n

and

qo(a) = qo(0) + [al* @o(lal),  gs(a) = q3(0) + |al* Ga(lal),
with

q0(0) = 2\/27 q3(0) = 4 qo(0).
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Asymptotic when n — 0 and 6 — 0

Vlasov equation for particles

OF 0
o +U'VmF—Vv'(bF)+7aT(’YF):O
with
0 v—u 2T
b(w,T) := — S5 g + ,
(v,T) :=7ng (v ug)( 52(1< Wg/ﬂ2> 36)
and

F. Charles
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Asymptotic when n — 0 and 6 — 0

Full Vlasov-Euler system

oF 0
E+v V.F -V, (bF)+ a—T(fyF)fO,

Oing + Vg o (nguy) =0,

Or(ngug) + Va2 (ngug ® ug + ng 52 ) //
nglug* | 3ng ) nglugl*  5ng

at( 2 +2ﬂ29 + Ve 2 +2520

— // [b(v,T) v v(v,T)] F(v,T)dvdT

T)dvdT,

F. Charles
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