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Motivations

y

» Nuclear safety: accident situation in pressurized water reactor

Context

» High temperature and pressure conditions

» Compressible two-phase flows (or multiphase flows) with heterogeneities
(bubbles, droplets...)

» Complex interface

v

Thermodynamical (dis)equilibrium
» Thermal, mechanical, mass transfers through the interface

v

Complex wave interactions (shocks, phase transition...)
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The richest model [Baer, Nunziato '86]

» Euler system for two immiscible phases k = 1,2 with coupling terms

» Phasic state wr = (pk, ur, €x), w = (w1, w2)
2
ug, . .
» Pressure pr = pr(pk, ex), total energy Ej, = ex + 7", chemical potential

pk = pik(Pks €x)
> Volume fraction oy, € [0, 1]

art+az =1 p = aip1 + az2p2

O 4 ui(w)Ozon = Ap(w)(p1 — p2)

Ot(akpr) + Or(arpru) = Ap(w) (p — fix)

O (ckpruk) + Oz (akprtiiy + arpr) — pi(w)dear = Au(w)(w — ur)
Oc(arprEr) + 0 ((pr Bk + pr)aru) + pi(w)deae = Au(w)ui(w)(w — ur)

v Well-posedness although nonconservative: hyperbolicity, symmetrizable,
jump conditions...

X Heuristic closure laws for interfacial quantities u;(w) and p;(w)

X Empirical relaxation time scales A, ,..(w) and source terms, possibly
depending on interfacial area...
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Motivations

y

Derivation of consistent models
» Macroscopic description
» Derive average models
» Conserve informations from the interface scale
» Interfacial area, surface tension...
» Mathematical structure
> Well-posedness (smooth solutions, discontinuities...)
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Comparison of two possible derivations

» One-velocity framework

Derivation by

Stationnary Action Principle

Derivation by

Homogenization
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Derivation by homogenization

[Serre '91 & '01, E '92, Hillairet '07, Bresch & Huang '11, Bresch & Hillairet '15 & '19,
Hillairet '18, Bresch, Burtea & Lagoutiére '20]

From micro to macro...
» Microscopic description of the mixture

» Viscous flows (smooth enough solutions) for both phases
> Conditions through the interfaces (“perfect transducers”)

» One-fluid model with high-oscillatory density solutions

» Pass to the limit to deduce macroscopic quantities 12, p1,2, p and u

Pros & Cons
v Fully rigorous

X Restrictive interface conditions
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Derivation by homogenization

[Serre '91 & '01, E '92, Hillairet '07, Bresch & Huang '11, Bresch & Hillairet '15 & '19,
Hillairet '18, Bresch, Burtea & Lagoutiére '20]

From micro to macro...
» Microscopic description of the mixture

» Viscous flows (smooth enough solutions) for both phases
» Conditions through the interfaces (“perfect transducers”) X

» One-fluid model with high-oscillatory density solutions X

» Pass to the limit to deduce macroscopic quantities 12, p1,2, p and u

Pros & Cons
v Fully rigorous

X Restrictive interface conditions

Goal [Hillairet, M. & Seguin '23]
v Introduce more complex interface behavior ~ surface tension

v Couple different fluid models
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The one-dimensional microscopic model

Assumptions for the microscopic model (first in 3D)
» Fluid f, N bubbles of gas g, n € {1,..., N}
» Compressible Navier-Stokes equations for both phases

» Bubbles remain spherical (translation, dilatation, rotation)
» Interface conditions

» Continuity of the velocity field U = Un
» Surface tension (Bf —Zn)v = knv
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The one-dimensional microscopic model

Assumptions for the microscopic model (first in 3D)
» Fluid f, N bubbles of gas g, n € {1,..., N}
» Compressible Navier-Stokes equations for both phases

» Bubbles remain spherical (translation, dilatation, rotation)
» Interface conditions

» Continuity of the velocity field U = Un
» Surface tension (Zf—3%n)=7/Rn
In 1D
B,
Fo Bu . Fn Fn
et  — B ==

» In the fluid domain F(t)
> ppiugs By = Apdeus —ps(pf)
» In each buble B, (t) = B(cn(t), Rn(t))

» Constant mass m.,, and Newton laws
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The one-dimensional microscopic model

Assumptions for the microscopic model (first in 3D)
» Fluid f, N bubbles of gas g, n € {1,...,N}
» Compressible Navier-Stokes equations for both phases

» Bubbles remain spherical (translation, dilatation, rotation)
» Interface conditions

» Continuity of the velocity field Uf = un
» Surface tension (X5 —3n) =v/Rn
In 1D
B,
Fo Bu . T Fn
et  — B |

» In the fluid domain F(t)
> poupe Xp = ApOzup —pyr(py)
» In each buble B, (t) = B(cn(t), Rn(t))

» Constant mass m, and Newton laws

» Well posedness of the Cauchy problem for a time T > 0, depending on
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Microscopic initial data

Provide the initial gas-bubble distribution
» Probability distribution of the bubbles, in position x and radius r

Sy = Sy(z,r) € L'(Q x RY)

» First moments of Sg
» 1—st order moment ~~ volume fraction

(XO'L': ‘s TTT‘
0(x) A (2r)89(z, r)d

» (0—th order moment (~ gas covolume, “interfacial area")

:/ SS(:L‘,'!‘)d’r
JR+

Family of microscopic initial data to be constructed from 57, p} and u$}

» For any bubble number N > 1:
1. From SO deduce (F(,ij 0 RU\) O)n 1,...,N
2. Use velocity continuity to define C(V> 0 R(]\> 0
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Solve the microscopic model

Scaling

> m,, RS, |FI| and v behave as N *

Microscopic Cauchy problem independent of N [Hillairet, M., Seguin '23]

Consider compatible initial data and the above scaling. Then there exists
T > 0, independent of N, such that

(o5, uf", (), R )nr,...w)

exists and is unique

» T, taken smaller and smaller along the proof
» Combine energy and regularity estimates, independent of NV
» Smoothness of the velocity u<fN) obtained by extended stress tensors
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Pass to the limit N — oo to deduce macroscopic quantities

Fluid unknowns

> Characteristic function of the fluid domain x"¥) = 1 (v, density
(N) _ (N)
pi = py

Gas unknowns
» Density péN) = ny:1 pg,,mlgn with piY) = m,(,,,N)/(QRg,,N))

N (N

> Interfacial area/covolume a™¥) = 3" aj, )15, with afY) = 1/(2NR,)

Mixture unknowns

> Density p"¥) and velocity u™
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Pass to the limit N — oo to deduce macroscopic quantities

Fluid unknowns

> Characteristic function of the fluid domain x) = (v, density
(N) _ (N)
pi = py
Gas unknowns
> Density pi") = 20, ol 15, with ol = mi /(2R

> Interfacial area/covolume o) = SN Mg, with o) = 1/(2NR,)

Mixture unknowns

> Density p"¥) and velocity u™

Methodology
» Using relative compactness (up to extraction of subsequences)

> Pass to the limit in nonlinear combinations of x")(t,z), p'™(t, ) and
(N) (t )
a T

v Nonlinear convergence in the sense of Young measures

~» Evolution equations on fluid, bubble and mixture unknowns
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The macroscopic model

Macroscopic closed system

ar+az =1, p=aipr + azp2
Q20 (1:|

a1z + az i |:(/\2 — A1)0zu~+ (p1(p1) — p2(p2)) — 7}/072

Ora + Oz (au) =0
Ot(a1p1) + Oz (c1pru) = 0, Ot (a2p2) + Oz (c2pau) =0
O (pu) + 9 (p*u) = 8%

with ¥ = 22 [C%u - (%}{pl(pl) + %P2(02)> - ;—2@}

a1 + udzp =
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The macroscopic model

Macroscopic closed system

ar+az =1, p=aipr + azp2

Qo . = @
2t e = B+ () = palo) ~ T

Ora + Oz (au) =0
Ot(a1p1) + Ox(a1priu) =0, Ot(a2p2) + Ox(a2pou) =0
B (pu) + u(p°u) = 0:%

with 3 = 22 [&u - (;’—;pl(m) + %pz(pz)) - %a}

a1AztagAy

Oy + udyop =

Additional kinetic equation (Boltzmann-Williams)

1
SEN) _

» Distribution function in position and radius =5 Egil Ocr (), N Ry (1)

» Converges towards the probability distribution S, satisfying

+ 100 ((r(S + palp2)) +7/2)8,) = 0

OrSg — 02(Sy1) 3
2

> 0-th order moment a(t,z) = [, Sy(t,z,r)dr
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Comments on the macroscopic model

v Mechanical relaxation
Surface tension
a interfacial area in 3D(?)

Additional kinetic equation

X 3D extension
Viscous flows

1 velocity/tem perature

Derivation by

Homogenization
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Two possible derivations

Derivation by

Stationnary Action Principle
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Derivation by Stationary Action Principle

[Bedford '85, Gavrilyuk & Gouin '99, Gavrilyuk & Saurel '02, Berdichevsky '09, Belozerov,
Peshkov & Romenski '15...]

>

v

x N vy

Set up the assumptions that govern the physical phenomenon
i.e. define kinetic and potential energies

Lagrangian L whose integral over space-time gives the Hamiltonian Action
of the system

Evolution of the system along possible trajectories
SAP postulate: the physical trajectory optimizes the action
Hamiltonian and entropy structure

Reversible processes
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SAP for two-phase flows with surface tension

Main ingredient
L = kinetic energy — potential energy

State of art
[Gavrilyuk & Saurel '02, Drui '17, Essadki '18, Cordesse '20, Di Battista '21, Kokh '21...]

> Add terms in the kinetic energy, keep geometrical informations related to
small scale interface features

X Consider surface tension as a kinetic feature
X No particular derivation of the potential energy
X lIsothermal case
Aim
v Consider surface tension as a thermodynamic feature

v Provide a rigorous derivation of the potential energy
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Fluid and gas phases

» Porous media literature [Smai '20, Kondepudi & Prigogine '98, Laudau & Lifshitz

'78...]
Extensive description
> k=12

» Volume V), > 0, entropy S > 0, mass M > 0

> Internal energy F), € C?((Ry)?)
> Convex and positively homogeneous: VA € R*.

Ep(AMy, A\Vi, ASy) = ANEy, (My, Vi, Sk)

> Gibbs form
dEk: = Tk:dSkr - pk:d‘/k: + N‘kd]\/[k:

Pressure pj., temperature T}, > 0, chemical potential 1,

Intensive form : intensive variables relatively to the mass of the phase &
> Specific volume 7, = Vi.,/M), = (1/pi) and entropy s, = Si/Mj,
> Specific internal energy ex (7%, sx) = 1/ My Ey(My, Vi, Sk)

dex = Thdsk — prds
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The interface

Assumptions

» Sharp, no volume, no mass

Extensive description
» Entropy S; > 0, area A >0
» Internal energy F;(S;, A) convex and positively homogeneous

» Gibbs form

> Surface tension v
> Interfacial temperature T;

Intensive description
> Intensive variables relatively to the volume V' of the mixture
> Interfacial area density a = A/V
> Intensive variables relatively to the interfacial area A

> Interfacial intensive entropy s; = S;/A
> Interfacial intensive energy ¢; = F; /A
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The fluid-interface system

For a given state (M, V, E, A) of the system

Modeling constraints

» Fluid phases are immiscible, no vacuum, interface has no volume

1 = a1 + ao with ag :Vk/V c [0,1]

» Mass conservation, interface has no mass
1 =y1 + y2 with y, = M, /M € [0,1]
> Entropy conservation (homogeneity)

1 =21+ 22+ 2z with z,, = S, /S € [0,1],k = 1,2,

System extensive internal energy

E(M,V,S,A) = E\(My,Vi,51) + E2(Msa, Va, S2) + Ei(Si, A)
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Mixture potentials and equilibrium

Extended Gibbs form for the system

dE = (z1Th + 22T + zT3)dS — (a1p1 + aep2 — ay)dV + (yip1 + yapz)dM
+ S((Th — Ti)dz + (T2 — Ti)dz2) — V((p1 — p2)dar — vda) + M (p1 — p2)dys

Consequences

» Definitions of the mixture potentials

T :=2nTh + 22T + zT;
p = a1p1 + azp2 — ay
W= Y11 + Y22

> At thermodynamical equilibrium, for a given state (M, V, E, A), the
mixture energy E reaches a minimum

1 = po
T =15 ="1T;
~yda — (p1 — p2)dar =0
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Potential energy candidate

Potential energy accounting for interfacial informations [v. '24]

«Q
e(T, 8,51, 82,a,a1,91) =y1€1 (*17'751> + (1 =y1)e2 (
Y1 1—wn

Cares (S —yis1 — (1 - y1)32>
aT

where
> s is the system specific entropy

s=vy1s1+ (1 —yi)s2 +ars;
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Kinetic energy

N 1
kinetic energy = §p|u|2 +0

> Kinetic energy of translational motion +small scale kinetic energy
» [Gavrilyuk & Saurel '02, Drui '17, Cordesse '18, Di Battista '21, Loison '23...]

6 = m(a)|Diai|?>  with Dy =8 - +u- V-

» Here consider 1 1
0= §m|Dto¢1\2 + §V|Dta\2

» Physical interpretation
> Pulsation energy results in both volume and interfacial area variations

> (A posteriori) Mathematical argument
> Mandatory to get evolution/transport equations on «; and a

21/27



Kinetic energy

N 1
kinetic energy = §p|u|2 +0

» Kinetic energy of translational motion +small scale kinetic energy
» [Gavrilyuk & Saurel '02, Drui '17, Cordesse '18, Di Battista '21, Loison '23...]

0 = m(a)\Dtoz1|2 with Dy- = 9¢ - +u - V-

» Here consider 1 1
0= §m|Dta1 1>+ §V|Dta\2

» Physical interpretation
» Pulsation energy results in both volume and interfacial area variations

» (A posteriori) Mathematical argument
> Mandatory to get evolution/transport equations on «; and a

Moral

> Kinetic energy encodes the final set of PDEs
> Potential energy encodes the pressure and source terms (via the extended

Gibbs form)
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Lagrangian, assumptions and SAP

Lagrangian
1 o 1 , 1 ) _
L(B) = §p|u| + §m|Dta1\ + §V|Dta\ — pe(B)

Some additional assumptions/constraints
» Mass conservations
> Density of the system p = 1/7: 9:p + div(pu) =0
» Mass fraction y1: Diy; =0

» Specific entropy conservation along trajectories
Dis=0 and Dys, =0, k=12
~ Interface entropy s; is not advected
Choice of variables to depict the system
(z,t) = B = (p, s, s1,82,a,a1,y1,u, Diar, Dia)

Stationary Action Principle
» Integral of L defines the Hamiltonian Action of the system
» Family of transformations such that the constraints hold
» Physically relevant transformation optimizes the Action
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Conservative PDE system

Evolution equations [Di Battista '21, M. '24]

SAP leads to
. oL . 0L
O M + div(Mu) — Do 0 with M = 7@%D,,oz1)
oL

0¢P + div(Pu) — a 0 with P = a(Dea)

K +div(Ku) — VL™ =0 with K = = and L** = p>— — L
ou ap

Moreover if

E(p, K, M, P, s,s1,s2,y1) = kinetic energy + potential energy

is convex, then the system is hyperbolic and symetrizable.

» Godunov-Mock argument
X Sufficient criterion quite restrictive
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Extended equations

> By definition of L(B)
> Equation on K = 9L /du = pu gives the momentum equation
d:(pu) +div(pu'u) +V (p + %'Dt0ﬂ|2 + %‘Dta|2> =0
with

p=aipr+ (1 —a1)p2 —ay

» Two second order conservative equations on M = mD;a1 and P = vD;a

Dioy = 0ra1 +u-Vag = Py
m
1
ow+u-Vw = (p2 — p1)
Vmpyr
_ pyin

Dia = 0ta+u-Va=

2
VVpyL

v
on+u-Vn =

> Equations on w and n refer to small scale momentum equation
» Equations on a; and a connect small and large scales
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Comparison to similar models

Final set of equations [v. '24]

a1 +oa2 =1, p=aip1+azp2, p=oa1p1+ (1 —a1)p2 —ay
Otp + div(pu) =0
. m v
At (pu) + div (PUTU + (p+ 5 (py1w)? + §(py1n)2) Id) =0
Ot + uTVal = p;;liU
m
dta+u' Va = (e
N
1
drw+u' Vw = (p2 —p1)
\/f?npyl
n+u'Vn=
Vvpyt

» Formal asymptotics

» ~,v — 0 and isothermal case: [Drui et al '17]
> O(y/v,\/m): [Kokh et al '19] , recover almost the model of part 1
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Comments on the resulting model

Derivation by

Stationnary Action Principle

v Mechanical relaxation
Surface tension, interfacial area
Two temperatures

Possibly two velocities

X Lack of dissipative terms

Provide relaxation terms to close the system
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To sum up

v Mechanical relaxation
Surface tension Derivation by
a interfacial area in 3D(?) Stationnary Action Principle
Additional kinetic equation

v/ Mechanical relaxation

X 3D extension Surface tension, interfacial area
Viscous flows Two temperatures
1 velocity/temperature Possibly two velocities
Derivation by X Lack of dissipative terms
Homogenization Provide relaxation terms to close the system

Thank you for your attention!
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