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Motivations

Liquid

Gas

Context
▶ Nuclear safety: accident situation in pressurized water reactor
▶ High temperature and pressure conditions
▶ Compressible two-phase flows (or multiphase flows) with heterogeneities

(bubbles, droplets...)
▶ Complex interface

▶ Thermodynamical (dis)equilibrium
▶ Thermal, mechanical, mass transfers through the interface

▶ Complex wave interactions (shocks, phase transition...)
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The richest model [Baer, Nunziato ’86]

▶ Euler system for two immiscible phases k = 1, 2 with coupling terms
▶ Phasic state wk = (ρk, uk, ek), w = (w1, w2)

▶ Pressure pk = pk(ρk, ek), total energy Ek = ek +
u2
k

2
, chemical potential

µk = µk(ρk, ek)

▶ Volume fraction αk ∈ [0, 1]

α1 + α2 = 1 ρ = α1ρ1 + α2ρ2

∂tα1 + ui(w)∂xα1 = λp(w)(p1 − p2)

∂t(αkρk) + ∂x(αkρku) = λρ(w)(µl − µk)

∂t(αkρkuk) + ∂x(αkρku
2
k + αkpk)− pi(w)∂xαk = λu(w)(ul − uk)

∂t(αkρkEk) + ∂x((ρkEk + pk)αku) + pi(w)∂tαk = λu(w)ui(w)(ul − uk)

✓ Well-posedness although nonconservative: hyperbolicity, symmetrizable,
jump conditions...

✗ Heuristic closure laws for interfacial quantities ui(w) and pi(w)

✗ Empirical relaxation time scales λp,ρ,u(w) and source terms, possibly
depending on interfacial area...
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Motivations

Liquid

Gas

Derivation of consistent models
▶ Macroscopic description

▶ Derive average models
▶ Conserve informations from the interface scale

▶ Interfacial area, surface tension...
▶ Mathematical structure

▶ Well-posedness (smooth solutions, discontinuities...)
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Comparison of two possible derivations

▶ One-velocity framework

Derivation by

Homogenization

Derivation by

Stationnary Action Principle
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Derivation by homogenization

[Serre ’91 & ’01, E ’92, Hillairet ’07, Bresch & Huang ’11, Bresch & Hillairet ’15 & ’19,

Hillairet ’18, Bresch, Burtea & Lagoutière ’20]

From micro to macro...
▶ Microscopic description of the mixture

▶ Viscous flows (smooth enough solutions) for both phases
▶ Conditions through the interfaces (“perfect transducers”)

▶ One-fluid model with high-oscillatory density solutions
▶ Pass to the limit to deduce macroscopic quantities α1,2, ρ1,2, ρ and u

Pros & Cons
✓ Fully rigorous

✗ Restrictive interface conditions
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Derivation by homogenization

[Serre ’91 & ’01, E ’92, Hillairet ’07, Bresch & Huang ’11, Bresch & Hillairet ’15 & ’19,

Hillairet ’18, Bresch, Burtea & Lagoutière ’20]

From micro to macro...
▶ Microscopic description of the mixture

▶ Viscous flows (smooth enough solutions) for both phases
▶ Conditions through the interfaces (“perfect transducers”) ✗

▶ One-fluid model with high-oscillatory density solutions ✗

▶ Pass to the limit to deduce macroscopic quantities α1,2, ρ1,2, ρ and u

Pros & Cons
✓ Fully rigorous

✗ Restrictive interface conditions

Goal [Hillairet, M. & Seguin ’23]

✓ Introduce more complex interface behavior ⇝ surface tension

✓ Couple different fluid models
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The one-dimensional microscopic model

Assumptions for the microscopic model (first in 3D)
▶ Fluid f , N bubbles of gas g, n ∈ {1, . . . , N}
▶ Compressible Navier-Stokes equations for both phases
▶ Bubbles remain spherical (translation, dilatation, rotation)
▶ Interface conditions

▶ Continuity of the velocity field uf = un
▶ Surface tension (Σf − Σn)ν = κnν
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▶ Compressible Navier-Stokes equations for both phases
▶ Bubbles remain spherical (translation, dilatation, rotation)
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▶ Continuity of the velocity field uf = un
▶ Surface tension (Σf − Σn) = γ/Rn

In 1D

Bn

Rn

cn

F0 Fn FN

▶ In the fluid domain F(t)
▶ ρf , uf , Σf = λf∂xuf − pf (ρf )

▶ In each buble Bn(t) = B(cn(t), Rn(t))
▶ Constant mass mn and Newton laws
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Assumptions for the microscopic model (first in 3D)
▶ Fluid f , N bubbles of gas g, n ∈ {1, . . . , N}
▶ Compressible Navier-Stokes equations for both phases
▶ Bubbles remain spherical (translation, dilatation, rotation)
▶ Interface conditions

▶ Continuity of the velocity field uf = un
▶ Surface tension (Σf − Σn) = γ/Rn

In 1D
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cn

F0 Fn FN

▶ In the fluid domain F(t)
▶ ρf , uf , Σf = λf∂xuf − pf (ρf )

▶ In each buble Bn(t) = B(cn(t), Rn(t))
▶ Constant mass mn and Newton laws

▶ Well posedness of the Cauchy problem for a time T > 0, depending on
N ...
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Microscopic initial data

Provide the initial gas-bubble distribution
▶ Probability distribution of the bubbles, in position x and radius r

S0
g = S0

g(x, r) ∈ L1(Ω× R+)

▶ First moments of S0
g

▶ 1−st order moment ⇝ volume fraction

α0
g(x) =

∫
R+

(2r)S0
g(x, r)dr

▶ 0−th order moment (⇝ gas covolume, “interfacial area”)

a0(x) =

∫
R+

S0
g(x, r)dr

Family of microscopic initial data to be constructed from S0
g , ρ0f and u0

f

▶ For any bubble number N ≥ 1:
1. From S0

g deduce (c
(N),0
n , R

(N),0
n )n=1,...,N

2. Use velocity continuity to define ċ
(N),0
n , Ṙ(N),0

n
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Solve the microscopic model

Scaling
▶ mn, R0

n, |F0
n| and γ behave as N−1

Microscopic Cauchy problem independent of N [Hillairet, M., Seguin ’23]

Consider compatible initial data and the above scaling. Then there exists
T∞ > 0, independent of N , such that(

ρ
(N)
f , u

(N)
f , (c(N)

n , R(N)
n )n=1,...,N

)
exists and is unique

▶ T∞ taken smaller and smaller along the proof
▶ Combine energy and regularity estimates, independent of N
▶ Smoothness of the velocity u

(N)
f obtained by extended stress tensors
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Pass to the limit N → ∞ to deduce macroscopic quantities

Fluid unknowns
▶ Characteristic function of the fluid domain χ(N) = 1F(N) , density

ρ
(N)
1 = ρ

(N)
f

Gas unknowns
▶ Density ρ

(N)
2 =

∑N
n=1 ρ

(N)
n 1Bn with ρ

(N)
n = m

(N)
n /(2R

(N)
n )

▶ Interfacial area/covolume a(N) =
∑N

n=1 a
(N)
n 1Bn with a

(N)
n = 1/(2NRn)

Mixture unknowns
▶ Density ρ(N) and velocity u(N)
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ρ
(N)
1 = ρ

(N)
f

Gas unknowns
▶ Density ρ

(N)
2 =

∑N
n=1 ρ

(N)
n 1Bn with ρ

(N)
n = m

(N)
n /(2R

(N)
n )

▶ Interfacial area/covolume a(N) =
∑N

n=1 a
(N)
n 1Bn with a

(N)
n = 1/(2NRn)

Mixture unknowns
▶ Density ρ(N) and velocity u(N)

Methodology
▶ Using relative compactness (up to extraction of subsequences)
▶ Pass to the limit in nonlinear combinations of χ(N)(t, x), ρ(N)(t, x) and

a(N)(t, x)

✓ Nonlinear convergence in the sense of Young measures

⇝ Evolution equations on fluid, bubble and mixture unknowns
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The macroscopic model

Macroscopic closed system

α1 + α2 = 1, ρ = α1ρ1 + α2ρ2

∂tα1 + u∂xα1 =
α2α1

α1λ2 + α2λ1

[
(λ2 − λ1)∂xu+ (p1(ρ1)− p2(ρ2))− γ̄

a

α2

]
∂ta+ ∂x(au) = 0

∂t(α1ρ1) + ∂x(α1ρ1u) = 0, ∂t(α2ρ2) + ∂x(α2ρ2u) = 0

∂t(ρu) + ∂t(ρ
2u) = ∂xΣ

with Σ = λ2λ1
α1λ2+α2λ1

[
∂xu−

(
α1
λf

p1(ρ1) +
α2
λ2

p2(ρ2)

)
− γ̄

λ2
a

]

Additional kinetic equation (Boltzmann-Williams)

▶ Distribution function in position and radius S
(N)
t =

1

N

∑N
k=1 δck(t),NRk(t)

▶ Converges towards the probability distribution Sg satisfying

∂tSg − ∂x(Sgū) +
1

λ2
∂r((r(Σ2 + p2(ρ2)) + γ̄/2

)
Sg) = 0

▶ 0-th order moment a(t, x) =
∫
R+ Sg(t, x, r)dr
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Comments on the macroscopic model

✓ Mechanical relaxation

Surface tension
a interfacial area in 3D(?)

Additional kinetic equation

✗ 3D extension

Viscous flows
1 velocity/temperature

Derivation by

Homogenization
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Two possible derivations
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Stationnary Action Principle
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Derivation by Stationary Action Principle

[Bedford ’85, Gavrilyuk & Gouin ’99, Gavrilyuk & Saurel ’02, Berdichevsky ’09, Belozerov,

Peshkov & Romenski ’15...]

▶ Set up the assumptions that govern the physical phenomenon
i.e. define kinetic and potential energies

▶ Lagrangian L whose integral over space-time gives the Hamiltonian Action
of the system

▶ Evolution of the system along possible trajectories
▶ SAP postulate: the physical trajectory optimizes the action

✓ Hamiltonian and entropy structure

✗ Reversible processes
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SAP for two-phase flows with surface tension

Main ingredient
L = kinetic energy − potential energy

State of art
[Gavrilyuk & Saurel ’02, Drui ’17, Essadki ’18, Cordesse ’20, Di Battista ’21, Kokh ’21...]

▶ Add terms in the kinetic energy, keep geometrical informations related to
small scale interface features

✗ Consider surface tension as a kinetic feature

✗ No particular derivation of the potential energy

✗ Isothermal case

Aim
✓ Consider surface tension as a thermodynamic feature

✓ Provide a rigorous derivation of the potential energy
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Fluid and gas phases

▶ Porous media literature [Smai ’20, Kondepudi & Prigogine ’98, Laudau & Lifshitz

’78...]

Extensive description
▶ k = 1, 2

▶ Volume Vk ≥ 0, entropy Sk ≥ 0, mass Mk ≥ 0
▶ Internal energy Ek ∈ C2((R+)

3)
▶ Convex and positively homogeneous: ∀λ ∈ R∗

+

Ek(λMk, λVk, λSk) = λEk(Mk, Vk, Sk)

▶ Gibbs form
dEk = TkdSk − pkdVk + µkdMk

▶ Pressure pk, temperature Tk > 0, chemical potential µk

Intensive form : intensive variables relatively to the mass of the phase k

▶ Specific volume τk = Vk/Mk = (1/ρk) and entropy sk = Sk/Mk

▶ Specific internal energy ek(τk, sk) = 1/Mk Ek(Mk, Vk, Sk)

dek = Tkdsk − pkdτk
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The interface

Assumptions
▶ Sharp, no volume, no mass

Extensive description
▶ Entropy Si ≥ 0, area A ≥ 0

▶ Internal energy Ei(Si, A) convex and positively homogeneous
▶ Gibbs form

dEi = TidSi + γdA

▶ Surface tension γ
▶ Interfacial temperature Ti

Intensive description
▶ Intensive variables relatively to the volume V of the mixture

▶ Interfacial area density a = A/V

▶ Intensive variables relatively to the interfacial area A
▶ Interfacial intensive entropy si = Si/A
▶ Interfacial intensive energy ei = Ei/A
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The fluid-interface system

For a given state (M,V,E,A) of the system

Modeling constraints
▶ Fluid phases are immiscible, no vacuum, interface has no volume

1 = α1 + α2 with αk = Vk/V ∈ [0, 1]

▶ Mass conservation, interface has no mass

1 = y1 + y2 with yk = Mk/M ∈ [0, 1]

▶ Entropy conservation (homogeneity)

1 = z1 + z2 + zi with zk = Sk/S ∈ [0, 1], k = 1, 2, i

System extensive internal energy

E(M,V, S,A) = E1(M1, V1, S1) + E2(M2, V2, S2) + Ei(Si, A)
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Mixture potentials and equilibrium

Extended Gibbs form for the system

dE = (z1T1 + z2T2 + ziTi)dS − (α1p1 + α2p2 − aγ)dV + (y1µ1 + y2µ2)dM

+ S((T1 − Ti)dz1 + (T2 − Ti)dz2)− V ((p1 − p2)dα1 − γda) +M(µ1 − µ2)dy1

Consequences
▶ Definitions of the mixture potentials

T := z1T1 + z2T2 + ziTi

p := α1p1 + α2p2 − aγ

µ := y1µ1 + y2µ2

▶ At thermodynamical equilibrium, for a given state (M,V,E,A), the
mixture energy E reaches a minimum

µ1 = µ2

T1 = T2 = Ti

γda− (p1 − p2)dα1 = 0
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Potential energy candidate

Potential energy accounting for interfacial informations [M. ’24]

e(τ, s, s1, s2, a, α1, y1) =y1e1

(
α1

y1
τ, s1

)
+ (1− y1)e2

(
1− α1

1− y1
τ, s2

)
+ aτei

(
s− y1s1 − (1− y1)s2

aτ

)
where
▶ s is the system specific entropy

s = y1s1 + (1− y1)s2 + aτsi
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Kinetic energy

kinetic energy =
1

2
ρ|u|2 + θ

▶ Kinetic energy of translational motion +small scale kinetic energy
▶ [Gavrilyuk & Saurel ’02, Drui ’17, Cordesse ’18, Di Battista ’21, Loison ’23...]

θ = m(a)|Dtα1|2 with Dt· = ∂t ·+u · ∇·

▶ Here consider
θ =

1

2
m|Dtα1|2 +

1

2
ν|Dta|2

▶ Physical interpretation
▶ Pulsation energy results in both volume and interfacial area variations

▶ (A posteriori) Mathematical argument
▶ Mandatory to get evolution/transport equations on α1 and a
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▶ [Gavrilyuk & Saurel ’02, Drui ’17, Cordesse ’18, Di Battista ’21, Loison ’23...]

θ = m(a)|Dtα1|2 with Dt· = ∂t ·+u · ∇·

▶ Here consider
θ =

1

2
m|Dtα1|2 +

1

2
ν|Dta|2

▶ Physical interpretation
▶ Pulsation energy results in both volume and interfacial area variations

▶ (A posteriori) Mathematical argument
▶ Mandatory to get evolution/transport equations on α1 and a

Moral
▶ Kinetic energy encodes the final set of PDEs
▶ Potential energy encodes the pressure and source terms (via the extended

Gibbs form)
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Lagrangian, assumptions and SAP

Lagrangian

L(B) =
1

2
ρ|u|2 + 1

2
m|Dtα1|2 +

1

2
ν|Dta|2 − ρe(B̃)

Some additional assumptions/constraints
▶ Mass conservations

▶ Density of the system ρ = 1/τ : ∂tρ+ div(ρu) = 0
▶ Mass fraction y1: Dty1 = 0

▶ Specific entropy conservation along trajectories

Dts = 0 and Dtsk = 0, k = 1, 2

⇝ Interface entropy si is not advected

Choice of variables to depict the system

(x, t) 7→ B = (ρ, s, s1, s2, a, α1, y1,u,Dtα1,Dta)

Stationary Action Principle
▶ Integral of L defines the Hamiltonian Action of the system
▶ Family of transformations such that the constraints hold
▶ Physically relevant transformation optimizes the Action
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Conservative PDE system

Evolution equations [Di Battista ’21, M. ’24]

SAP leads to
∂tM + div(Mu)− ∂L

∂α1
= 0 with M =

∂L

∂(Dtα1)

∂tP + div(Pu)− ∂L

∂a
= 0 with P =

∂L

∂(Dta)

∂tK + div(Ku)−∇L∗,ρ = 0 with K =
∂L

∂u
and L∗,ρ = ρ

∂L

∂ρ
− L.

Moreover if

E(ρ,K,M,P, s, s1, s2, y1) = kinetic energy + potential energy

is convex, then the system is hyperbolic and symetrizable.

▶ Godunov-Mock argument

✗ Sufficient criterion quite restrictive
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Extended equations

▶ By definition of L(B)

▶ Equation on K = ∂L/∂u = ρu gives the momentum equation

∂t(ρu) + div(ρu⊤u) +∇
(
p+

m

2
|Dtα1|2 +

ν

2
|Dta|2

)
= 0

with
p = α1p1 + (1− α1)p2 − aγ

▶ Two second order conservative equations on M = mDtα1 and P = νDta
Dtα1 = ∂tα1 + u · ∇α1 =

ρy1w√
m

∂tw + u · ∇w =
1√

mρy1
(p2 − p1)

Dta = ∂ta+ u · ∇a =
ρy1n√

ν

∂tn+ u · ∇n =
γ√
νρy1

▶ Equations on w and n refer to small scale momentum equation
▶ Equations on α1 and a connect small and large scales
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Comparison to similar models

Final set of equations [M. ’24]



α1 + α2 = 1, ρ = α1ρ1 + α2ρ2, p = α1p1 + (1− α1)p2 − aγ

∂tρ+ div(ρu) = 0

∂t(ρu) + div
(
ρu⊤u+

(
p+

m

2
(ρy1w)2 +

ν

2
(ρy1n)2

)
Id

)
= 0

∂tα1 + u⊤∇α1 =
ρy1w√

m

∂ta+ u⊤∇a =
ρy1n√

ν

∂tw + u⊤∇w =
1

√
mρy1

(p2 − p1)

∂tn+ u⊤∇n =
γ

√
νρy1

▶ Formal asymptotics
▶ γ, ν → 0 and isothermal case: [Drui et al ’17 ]
▶ O(

√
ν,

√
m): [Kokh et al ’19 ] , recover almost the model of part 1
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Comments on the resulting model

✓ Mechanical relaxation

Surface tension

a interfacial area in 3D?
Additional kinetic equation

✗ 3D extension

Viscous flows
1 velocity/temperature

Derivation by

Homogenization

Derivation by

Stationnary Action Principle

✓ Mechanical relaxation
Surface tension, interfacial area

Two temperatures

Possibly two velocities

✗ Lack of dissipative terms

Provide relaxation terms to close the system
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To sum up

✓ Mechanical relaxation

Surface tension
a interfacial area in 3D(?)

Additional kinetic equation

✗ 3D extension

Viscous flows
1 velocity/temperature

Derivation by

Homogenization

Derivation by

Stationnary Action Principle

✓ Mechanical relaxation
Surface tension, interfacial area

Two temperatures

Possibly two velocities

✗ Lack of dissipative terms

Provide relaxation terms to close the system

Thank you for your attention!
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