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transformation, into a sequence (or a set of sequences) which
converges, under some assumptions, faster to the same limit.



Introduction

Let (Sn) be a sequence converging to a limit S.

If it converges slowly, it is possible to transform it, by a sequence
transformation, into a sequence (or a set of sequences) which
converges, under some assumptions, faster to the same limit.

Any sequence transformation is built on the idea that the sequence
to be accelerated behaves like a model sequence defined by some
given properties.



The scalar Shanks transformation

Shanks transformation (1955) assumes that the scalar sequence
(Sn) satisfies the linear difference equation of order k

a0(Sn − S) + a1(Sn+1 − S) + · · · + ak(Sn+k − S) = 0, n = 0,1, . . .

where the unknown scalars ai are such that a0ak 6= 0 and
a0 + · · ·+ ak 6= 0.
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The scalar Shanks transformation

Shanks transformation (1955) assumes that the scalar sequence
(Sn) satisfies the linear difference equation of order k

a0(Sn − S) + a1(Sn+1 − S) + · · · + ak(Sn+k − S) = 0, n = 0,1, . . .

where the unknown scalars ai are such that a0ak 6= 0 and
a0 + · · ·+ ak 6= 0.

Then, the idea is to compute S.

Writing the preceding relation for the indexes

n,n+ 1, . . . ,n+ k

and solving the linear system for the unknown S gives the following
formula
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If the sequence (Sn) does not satisfy the linear difference
equation given above, then the preceding ratio of determinant will
give only an approximation of the limit S of the sequence (Sn).
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If the sequence (Sn) does not satisfy the linear difference
equation given above, then the preceding ratio of determinant will
give only an approximation of the limit S of the sequence (Sn).

This approximation will depend on k and n, and will be denoted by

ek(Sn)

Thus the sequence (Sn) has been transformed into the set of
sequences (ek(Sn)).

This is Shanks transformation.
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The ε-algorithm due to Wynn (1956) is a recursive algorithm
for implementing Shanks transformation. Its rules are
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The scalar ε–algorithm

It is well–known that a numerical analyst is unable to
compute determinants.

The ε-algorithm due to Wynn (1956) is a recursive algorithm
for implementing Shanks transformation. Its rules are

ε
(n)
−1 = 0, n = 0,1, . . . ,
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(n)
0 = Sn, n = 0,1, . . . ,

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε

(n)
k )−1, k,n = 0,1, . . . ,











and it holds

ε
(n)
2k = ek(Sn), ε

(n)
2k+1 = 1/ek(∆Sn), k,n = 0,1, . . .

Remark: The quantities with an odd lower index are intermediate
computations.



The ε’s are put in a table, called the ε-array (red quantities are
computed from blue ones)
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It is the so called rhombus scheme, where the quantity in red is
computed from the three ones in blue.

ε
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k

ր ց
ε
(n+1)
k−1 ε

(n)
k+1

ց ր
ε
(n+1)
k



Shanks transformation and the ε–algorithm are related to Padé
approximants.

Indeed, let
f(t) = c0 + c1t+ c2t

2 + · · ·
If Shanks transformation is applied to the sequence of the partial
sums of f, then

ek(Sn) = ε
(n)
2k = [n+ k/k]f (t).



The vector ε–algorithm

If (Sn) is a sequence of vectors, the ε–algorithm can still be used
by defining the inverse of a vector y by

y−1 = y/(y, y)
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The vector ε–algorithm

If (Sn) is a sequence of vectors, the ε–algorithm can still be used
by defining the inverse of a vector y by

y−1 = y/(y, y)

One obtains the vector ε–algorithm also due to Wynn (1962).

But, the vectors ε
(n)
2k it produces are no longer represented by a

ratio of determinants (but by a ratio of much larger determinants)
or by designants, which makes its algebraic theory much more
arduous.



The topological Shanks transformation

For building a transformation similar to Shanks’, it was proposed
(C.B. (1975)) to consider a sequence (Sn) of elements of a
vector space E, and to start again from the difference equation

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0, n = 0,1, . . .,

with a0ak 6= 0 and a0 + · · ·+ ak = 1 which does not restrict the
generality.



The topological Shanks transformation

For building a transformation similar to Shanks’, it was proposed
(C.B. (1975)) to consider a sequence (Sn) of elements of a
vector space E, and to start again from the difference equation

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0, n = 0,1, . . .,

with a0ak 6= 0 and a0 + · · ·+ ak = 1 which does not restrict the
generality.

For computing the unknown coefficients ai, we have to obtain
k+ 1 equations in R from the preceding difference equation in E.
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(which means that it is a linear functional).

We denote by 〈y, v〉 ∈ R the duality product between y ∈ E∗ and
v ∈ E.

Writing the difference equation for two successive indexes,
subtracting them, and using the duality product with y, the
unknown coefficients ai are computed as the solution of the system

a0 + · · · + ak = 1
a0 < y,∆Sn > + · · · + ak < y,∆Sn+k > = 0

...
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



















Then, the transformation is defined by

ek(Sn) = a0Sn + · · ·+ akSn+k.

It holds
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The topological ε-algorithm

These elements of E can be recursively computed by the first
topological ε-algorithm (TEA1).
For n = 0, 1, . . . ,
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The topological ε-algorithm

These elements of E can be recursively computed by the first
topological ε-algorithm (TEA1).
For n = 0, 1, . . . ,

ε
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and it holds

ε
(n)
2k = ek(Sn), ε

(n)
2k+1 = y/ < y, ek(∆Sn) >, k,n = 0,1, . . .

Remark: Again, the elements with an odd lower index are
intermediate computations (they are elements of E ∗).
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The quantities in red are computed from the quantities in blue but
the rule is different for those with an odd or an even lower
index.
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The ε
(n)
2k are elements of E, while the ε

(n)
2k+1 are elements of E∗,

that is linear functionals on E .

For the implementation, each time a new element of the
sequence (Sn) is added in the first column, a new ascending
diagonal in the table is computed.

For computing the elements in red, it is necessary to store the
elements in blue and those in green.

Thus, in total,

one and a half diagonal

of elements (of E and E ∗) has to be stored.
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The simplified topological ε-algorithm

We will now show how to simplify the rules of this algorithm in
order to have to store less elements.

Moreover, we will be able to store and compute only those with
an even lower index, which are elements of E (the interesting
ones).

It holds

< y, ε
(n)
2k >=ek(< y,Sn >) and ε

(n)
2k+1 = y/ek(< y,∆Sn >).

Then, applying the scalar ε-algorithm to the sequence

(Sn =< y,Sn >), we have ε
(n)
2k = ek(< y,Sn >).

Remark: Letters in blue are scalars, while those in red denote
elements of E and E∗.



We finally obtain the first simplified topological ε-algorithm
(STEA1)
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The ε’s in blue are scalars computed by the scalar ε-algorithm
applied to the sequence (< y,Sn >).



We finally obtain the first simplified topological ε-algorithm
(STEA1)

ε
(n)
2k+2 = ε
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ε
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(n+1)
2k

ε
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(n)
2k

(ε
(n+1)
2k − ε

(n)
2k ),

with ε
(n)
0 = Sn and ε

(n)
0 =< y,Sn >.

The ε (in red and bold) are elements of E .

The ε’s in blue are scalars computed by the scalar ε-algorithm
applied to the sequence (< y,Sn >).

Remark: In all these formulas, only elements of E (even lower
indexes) now appear in the rule of the algorithm.
Elements of E∗ (odd lower indexes) are no longer required. They
have been replaced by the quantities obtained by the scalar
ε–algorithm.



In the ε-array, one element in red is computed from those in blue
(now a simple triangular scheme involving only even lower terms).

ε
(n)
2k

ց
ε
(n+1)
2k −→ ε

(n)
2k+2



In the ε-array, one element in red is computed from those in blue
(now a simple triangular scheme involving only even lower terms).

ε
(n)
2k

ց
ε
(n+1)
2k −→ ε

(n)
2k+2

Now, in the implementation, only

two half diagonals = one diagonal

are needed.



In the ε-array, one element in red is computed from those in blue
(now a simple triangular scheme involving only even lower terms).

ε
(n)
2k

ց
ε
(n+1)
2k −→ ε

(n)
2k+2

Now, in the implementation, only

two half diagonals = one diagonal

are needed.

Obviously also the scalars ε
(n)
2k have to be stored, but it is not

costly.
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There is second topological Shanks transformation which is
defined by

ek(Sn) = a0Sn+k + · · ·+ akSn+2k,

where the ai ’s are the same as for the first one.

It can be implemented by a second topological ε-algorithm
which needs one ascending diagonal for its implementation.

There is a second simplified topological ε-algorithm (STEA2)
which only requires the storage of

half of an ascending diagonal
instead of one.

ε
(n+1)
2k −→ ε

(n)
2k+2

ր
ε2k

(n+2)



Convergence and acceleration

Thank to the form of the simplified topological ε-algorithms,
and the fact that the vector y only intervenes in the initializations
of the scalar ε -algorithm, and that the elements belonging to E∗

are no longer needed, we are able to prove some new
convergence and acceleration results.

We will not discuss them here.



Summary

The topological ε-algorithms: TEA1, TEA2

2 rules
storage of the intermediate linear functionals ε

(n)
2k+1 ∈ E∗

computations involving the duality product with the ε
(n)
2k+1’s

and with y inside the algorithm
convergence and acceleration results difficult to obtain
because the rules of the algorithm are complicated
numerical instability can be present

The simplified topological ε -algorithms: STEA1, STEA2

only 1 rule

much less storage: only the elements ε
(n)
2k ∈ E

application of the linear functional y only to Sn ∈ E
no use of the duality product inside the algorithms
clearer role played by y, but difficult to choose
possibility to prove convergence and acceleration results
possibility to avoid some numerical instability



Implementation and numerical examples

For computing an element ε
(n)
2k an element of the column 2k,

one needs the following storage

# elements ε-array in spaces # working elements

TEA1 3k E,E∗ 4
STEA1 2k E 2

TEA2 2k E,E∗ 4
STEA2 k E 2



Implementation and numerical examples

For computing an element ε
(n)
2k an element of the column 2k,

one needs the following storage

# elements ε-array in spaces # working elements

TEA1 3k E,E∗ 4
STEA1 2k E 2

TEA2 2k E,E∗ 4
STEA2 k E 2

In our numerical examples, we took for vectors y = (1, . . . ,1)T

and, in the matrix case < y, · >= tr(·).
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m×s. We consider the system of nonlinear
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x = F(x) or f(x) = F(x)− x = 0 ∈ R
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Solution of equations

Let F : Rm×s 7−→ R
m×s. We consider the system of nonlinear

equations

x = F(x) or f(x) = F(x)− x = 0 ∈ R
m×s.

The Acceleration Method (AM)

For computing x , we can generate the fixed point iterates
xn+1 = F(xn) starting for x0, and accelerate this sequence by
applying the simplified topological ε-algorithm by considering the

sequence (ε
(n)
2k )n for a fixed value of k , or the sequence (ε

(0)
2k )k.



The Restarted and the Generalized Steffensen Methods (RM
and GSM)

Another possibility is to use a generalization of the well-known
Steffensen method

Restarted method (RM)














u0 = xn
ui = F(ui−1), i = 1, . . . ,2k (basic iterations)
Apply the simplified topological ε-algorithm to u0, . . . ,u2k

Set xn+1 = ε
(0)
2k



The Restarted and the Generalized Steffensen Methods (RM
and GSM)

Another possibility is to use a generalization of the well-known
Steffensen method

Restarted method (RM)














u0 = xn
ui = F(ui−1), i = 1, . . . ,2k (basic iterations)
Apply the simplified topological ε-algorithm to u0, . . . ,u2k

Set xn+1 = ε
(0)
2k

When k = m, the dimension of the system, the method is called
the Generalized Steffensen Method (GSM).
Under some assumptions, this method converges quadratically
when F : Rm 7−→ R

m (no proof yet when F : Rm×s 7−→ R
m×s) .



Nonlinear algebraic system

We consider the nonlinear system







x1 = x1x
3
2/2− 1/2+ sin x3

x2 = (exp(1+ x1x2) + 1)/2
x3 = 1− cos x3 + x41 − x2,

whose solution is (−1, 1, 0)T .
Starting from x0 = 0, we obtain the results of the left Figure for
the AM. For the GSM, the STEA2 gives better results than the
STEA1 as shown on the right Figure.
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Maximal solution of matrix equation

We are looking for the maximal Hermitian positive definite
solution X+ of the matrix equation

f(X) = X+ A∗X−1A−Q = 0,

where A,Q ∈ C
m×m with Q Hermitian positive definite.
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We are looking for the maximal Hermitian positive definite
solution X+ of the matrix equation

f(X) = X+ A∗X−1A−Q = 0,

where A,Q ∈ C
m×m with Q Hermitian positive definite.

The matrix X+ is called a maximal solution if X+ − X is positive
semidefinite for any Hermitian solution X of f .

For Q = I + A∗A, X+ = I if and only if ρ(A) < 1, a result which
provides an easy way of constructing numerical examples by taking
A = S/r with r > ρ(S) and S any matrix.
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We use the following iterative method proposed by C.-H. Guo
(1999)

X0 = Q,

Xn+1 = Q− A∗X−1
n A, n = 0,1, . . .

Converges slowly if the spectral radius of A is close to 1.

If we accelerate the convergence of the sequence (Xn) by the
simplified topological ε–algorithm, we obtain the results of next
Figure for the prolate matrix of the matrix toolbox.

The solid line corresponds to the error of the iterates Xn, and the

dashed ones to the sequences (ε
(n)
2 ), (ε

(n)
4 ), (ε

(n)
6 ), (ε

(n)
8 ).
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We can also use this method as the basic iterations for the
Generalized Steffensen Method described above. With the
clement matrix of dimension 10 of the matrix toolbox (divided by
10 in order to have ρ(A) = 0.9), this method produces the
following results for the norms.
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We can also use this method as the basic iterations for the
Generalized Steffensen Method described above. With the
clement matrix of dimension 10 of the matrix toolbox (divided by
10 in order to have ρ(A) = 0.9), this method produces the
following results for the norms.

iter. 0 iter. 1 iter. 2 iter. 3

error 9.77e − 001 4.24e − 004 2.72e − 008 3.58e − 011
‖f ‖ 5.17e − 001 2.93e − 004 2.88e − 008 3.68e − 011

The quadratic convergence is clearly seen.
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discrete-time Lyapunov equation,
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Discrete-time Lyapunov equation

We consider the symmetric Stein matrix equation, also called the
discrete-time Lyapunov equation,

S− ASAT = FFT,

F ∈ R
m×s, s ≪ m, with the eigenvalues of A inside the unit disk.

This equation can be solved by the iterative method

Sn+1 = FFT + ASnA
T,n = 0,1, . . . , S0 = 0.



The results of the next Figure correspond to the moler matrix of
dimension 500 for A.

It is a symmetric positive definite matrix with one small eigenvalue.
Its elements are aij = min(i , j)− 2 and aii = i .



The results of the next Figure correspond to the moler matrix of
dimension 500 for A.

It is a symmetric positive definite matrix with one small eigenvalue.
Its elements are aij = min(i , j)− 2 and aii = i .

The moler matrix A is then divided by an adequate factor so that
its spectral radius be equal to 0.9.

The matrix F is the parter matrix of dimension 500 × 30, and we
took k = 3.
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Matrix function: square root

The binomial iteration for computing the square root of I− C,
where ρ(C) < 1, consists in the iterations

Xn+1 =
1

2
(C+ X2

n), k = 0,1, . . . , X0 = 0.

The sequence (Xn) converges linearly to X = I − (I − C )1/2 and
Xn reproduces the series

(I − C )1/2 =
∞
∑

i=0

(

1/2
i

)

(−C )i = I −
∞
∑

i=1

αiCi , αi > 0,

up to and including the term Cn.



Matrix function: square root

The binomial iteration for computing the square root of I− C,
where ρ(C) < 1, consists in the iterations

Xn+1 =
1

2
(C+ X2

n), k = 0,1, . . . , X0 = 0.

The sequence (Xn) converges linearly to X = I − (I − C )1/2 and
Xn reproduces the series

(I − C )1/2 =
∞
∑

i=0

(

1/2
i

)

(−C )i = I −
∞
∑

i=1

αiCi , αi > 0,

up to and including the term Cn.

For C , we took the matrix moler of dimension 500 divided by
1.1 × 105 so that ρ(C ) = 0.9855. The AM gives the results of the
following Figure with k = 2 on the left and k = 4 on the right, for
the acceleration of the sequence (Xn).
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Matrix function: logarithm

We now want to compute an approximation of

log(I+ A) = A− A2

2
+

A3

3
− A4

4
+ · · ·+ (−1)n+1A

n

n
+ · · ·

where A is a real matrix.
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Matrix function: logarithm

We now want to compute an approximation of

log(I+ A) = A− A2

2
+

A3

3
− A4

4
+ · · ·+ (−1)n+1A

n

n
+ · · ·

where A is a real matrix.
We know that the series is convergent if ρ(A) < 1.
We will show that the topological ε-algorithm is able to accelerate
the convergence of the partial sums of this series and also . . . to
converge to an approximation of the value, when the series is
divergent!
We consider a random matrix B of dimension N = 50, we choose a
value r , and we define A = r × B/ρ(B).

We obtain for the AM the results of the next Figure (on the left
r = 0.9, k = 4, and on the right r = 1.2, k = 4). The linear
functional y induces the trace of a matrix.
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Fredholm integral equation

We consider the following nonlinear Fredholm integral equation
of the second kind with a given kernel K

u(t) =

∫ b

a
K(t, x,u(x))dx + f(t), t ∈ [a,b].
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Fredholm integral equation

We consider the following nonlinear Fredholm integral equation
of the second kind with a given kernel K

u(t) =

∫ b

a
K(t, x,u(x))dx + f(t), t ∈ [a,b].

The integral is approximated by a quadrature formula at points
xi . Then, u is computed at the points ti = xi which leads to a
system of nonlinear equations.
This system is solved by the GSM or by accelerating Picard
iterations by the AM.
Consider the following example

u(t) = t2
∫ 1

0

x2

1+ u2(x)
dx+ (1/2− ln 2)t2 +

√
t,

whose solution is u(x) =
√
x.
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Lotka-Volterra equations

The ε-algorithm is related to the Lotka-Volterra equations.

Instead of transforming a sequence Sn when n goes to infinity,
one can transform a function f(t) when t goes to infinity.

The corresponding Shanks transformation and the confluent
forms of the ε -algorithms are also related to the
Lotka-Volterra equations.
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