
PDIThe PDI Data InterfaceThe PDI Data Interface

IO, restart, in situ or coupling: PDI, a single 
interface to decouple data handling from 

computation in numerical simulation

October 4th, 2023 – SISMA

Julien Bigot2, François-Xavier Morvan2, 
Pierre-Antoine Raclius2, Yushan Wang2

Thanks to:
Leonardo Bautista Gomez1, Sebastian Friedemann6, Amal Gueroudji2, 
Virginie Grandgirard2, Karim Hasnaoui3, Francesco Iannone4, Kai Keller1, 
Guillaume Latu2, Yacine Ould Rouis3, Bruno Raffin6, Karol Sierocinski7, 
Kacper Sinkiewicz7, Benedikt Steinbusch5, Christian Witzler5

1 BSC,  2 CEA,  3 CNRS,  4 ENEA,  5 FZJ,  6 Inria,  7 PSNC

PDI



Oct. 4th, 2022 SISMA 2

PDIInitial Motivation: the I/O IssueInitial Motivation: the I/O Issue
 We want it easy to use
 We want it fast
 We want a portable library
 We want large language support
 We want parallelization independent file format
 We want a portable file format
 We want to leverage the underlying hardware
 We want…



Oct. 4th, 2022 SISMA 3

PDIInitial Motivation: the I/O IssueInitial Motivation: the I/O Issue
 We want it easy to use
 We want it fast
 We want a portable library
 We want large language support
 We want parallelization independent file format
 We want a portable file format
 We want to leverage the underlying hardware
 We want…

Handling I/O is complex
Optimizing I/O is a job on its own

Handling I/O is complex
Optimizing I/O is a job on its own



Oct. 4th, 2022 SISMA 4

PDI

 We want it easy to use
 We want it fast
 We want a portable library
 We want large language support
 We want parallelization independent file format
 We want a portable file format
 We want to leverage the underlying hardware
 We want…

Initial Motivation: the I/O IssueInitial Motivation: the I/O Issue

Handling I/O is complex
Optimizing I/O is a job on its own

Handling I/O is complex
Optimizing I/O is a job on its own

Complex but common problem,
A community with dedicated expert

Complex but common problem,
A community with dedicated expert

Let’s use librariesLet’s use libraries



Oct. 4th, 2022 SISMA 5

PDIThe I/O Issue: the library ecosystemThe I/O Issue: the library ecosystem

POSIX

HDF5

Adios
Hercule

PaDaWAnpHDF5

NetCDF

pNetCDFFTI

SCR

FlowVR

MPI I/O

XIOS

SIONlib

IME

Damaris



Oct. 4th, 2022 SISMA 6

PDIThe I/O issue: Choosing a libraryThe I/O issue: Choosing a library
Choosing the best library: a problem on its own

The best library depends on…
 The code specifics, the type of I/O

 Parallelism level, replicated / distributed data, I/O frequency, …
 Initialization data reading, result writing (small or large), checkpoint 

writing, coupling related I/O

 The specific execution
 Small case / large case, debug / production, …

 The specific hardware available
 I/O bandwidth, intermediate storage, … 



Oct. 4th, 2022 SISMA 7

PDIThe I/O issue: Choosing a libraryThe I/O issue: Choosing a library
Choosing the best library: a problem on its own

The best library depends on…
 The code specifics, the type of I/O

 Parallelism level, replicated / distributed data, I/O frequency, …
 Initialization data reading, result writing (small or large), checkpoint 

writing, coupling related I/O

 The specific execution
 Small case / large case, debug / production, …

 The specific hardware available
 I/O bandwidth, intermediate storage, … 

Not one-size fits all libraryNot one-size fits all library

Many codes end-up with an IO abstraction layerMany codes end-up with an IO abstraction layer



Oct. 4th, 2022 SISMA 8

PDIIntroducing PDIIntroducing PDI
© XKCD 
https://xkcd.com/927/



Oct. 4th, 2022 SISMA 9

PDIIntroducing PDIIntroducing PDI

No!
PDI is an Interface...

just an interface!

© XKCD 
https://xkcd.com/927/



Oct. 4th, 2022 SISMA 10

PDII/O in codes: let’s take a step backI/O in codes: let’s take a step back

Initialization Finalization

Main loop



Oct. 4th, 2022 SISMA 11

PDII/O in codes: let’s take a step backI/O in codes: let’s take a step back

Main loop

● parameters reading,
● data initialization,
● …

● Intermediate 
results,

● Checkpoint,
● Post-processing,
● Coupling outputs,
● …

● Data assimilation
● Coupling inputs,
● …

● Final results,
● Final checkpoint,
● …

Initialization Finalization



Oct. 4th, 2022 SISMA 12

PDII/O in codes: let’s take a step backI/O in codes: let’s take a step back

Main loop

● parameters reading,
● data initialization,
● …

● Intermediate 
results,

● Checkpoint,
● Post-processing,
● Coupling outputs,
● …

● Data assimilation
● Coupling inputs,
● …

● Final results,
● Final checkpoint,
● …

Initialization Finalization

Similar from the 
code point of view:
 Import or export 

data
But… different 
libraries needed



Oct. 4th, 2022 SISMA 13

PDII/O in codes: let’s take a step backI/O in codes: let’s take a step back

Main loop

● parameters reading,
● data initialization,
● …

● Intermediate 
results,

● Checkpoint,
● Post-processing,
● Coupling outputs,
● …

● Data assimilation
● Coupling inputs,
● …

● Final results,
● Final checkpoint,
● …

Initialization Finalization

Similar from the 
code point of view:
 Import or export 

data
But… different 
libraries needed

The
data-handling

problem

The
data-handling

problem



Oct. 4th, 2022 SISMA 14

PDIWhat is PDI?What is PDI?

Code Code Code

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

HPC Library
API API API

MPI

?

. . .

 PDI annotations: a purely 
declarative API

 Plugins for access to 
existing libraries



Oct. 4th, 2022 SISMA 15

PDIWhat is PDI?What is PDI?

Code Code Code

I/O Library
API API API

pluginpluginplugin pluginpluginplugin pluginpluginplugin

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

HPC Library
API API API

MPI

PDI PDI PDI

. . .

. . .

. . .

 PDI annotations: a purely 
declarative API

 PDI YAML spec. tree:
What to do with data

 Plugins for access to 
existing libraries

plugins:
  decl_hdf5:
    - file: meta${pcoord[0]}x${pcoord[1]}.h5
      write: [ dsize, psize ]



Oct. 4th, 2022 SISMA 16

PDI

?plugins:
  decl_hdf5:
    - file: meta${pcoord[0]}x${pcoord[1]}.h5
      write: [ dsize, psize ]

What is PDI?What is PDI?

Code Code Code

I/O Library
API API API

pluginpluginplugin pluginpluginplugin pluginpluginplugin

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

HPC Library
API API API

MPI

Data
references

PDI PDI PDI

PDI Data 
Store

. . .

. . .

. . .



Oct. 4th, 2022 SISMA 17

PDIInside PDI: The shared data storeInside PDI: The shared data store
➢PDI data store: a dict of buffer references

➢ Name  unique identifier⇒
➢ Reference

● Ownership & locking information
● RW-lock: Single Writer / Multiple Readers
● Memory ownership : Strong or Semi-weak

● Type  memory layout and interpretation⇒
● Buffer address  pointer to user memory (CPU/GPU[WIP])⇒

PDI Data 
Store



Oct. 4th, 2022 SISMA 18

PDIPDI data modelPDI data model

➢Data type: memory layout & sematics
➢ Annotations (C/C++), fully automatic (Python), or YAML (Fortran)
➢ MPI / HDF5 inspired model: scalar / array / record

➢“Data” vs. “Metadata”
➢ PDI only handles the pointer for “data”

● Minimal overhead

➢ PDI keeps a copy of “metadata”
● Can be used in $-expressions

#pragma pdi metadata
int buffer_size;
#pragma pdi size:[$buffer_size+1]
double *main_buffer;

Kevin Barre



Oct. 4th, 2022 SISMA 19

PDIInside PDI: the store + notificationsInside PDI: the store + notifications
➢PDI data store: a dict of buffer references

➢ Name  unique identifier⇒
➢ Reference

● Ownership & locking information
● RW-lock: Single Writer / Multiple Readers
● Memory ownership : Strong or Semi-weak

● Type  memory layout and interpretation⇒
● Buffer address  pointer to user memory (CPU/GPU[WIP])⇒

  

PDI Data 
Store



Oct. 4th, 2022 SISMA 20

PDIInside PDI: the store + notificationsInside PDI: the store + notifications
➢PDI data store: a dict of buffer references

➢ Name  unique identifier⇒
➢ Reference

● Ownership & locking information
● RW-lock: Single Writer / Multiple Readers
● Memory ownership : Strong or Semi-weak

● Type  memory layout and interpretation⇒
● Buffer address  pointer to user memory (CPU/GPU[WIP])⇒

➢Notification system: plugins register to be called
➢ On data share / access
➢ On arbitrary locations in code (named “events”)

PDI Data 
Store



Oct. 4th, 2022 SISMA 21

PDIPDI: A simple APIPDI: A simple API

 Init takes the specification tree as parameter
 The YAML is parsed using the paraconf library

 Finalize releases all PDI-related resources

a C / C++ API
Also available for:
 Fortran
 Python

/** Initializes PDI */
PDI_status_t PDI_init(PC_tree_t yaml_conf);

/** Finalizes PDI */
PDI_status_t PDI_finalize();



Oct. 4th, 2022 SISMA 22

PDI

typedef enum { PDI_IN, PDI_OUT, PDI_INOUT } PDI_inout_t;

// A data buffer is ready (filled)
PDI_status_t PDI_share(const char *name, void *data, PDI_inout_t access);

// A buffer will be reused
PDI_status_t PDI_reclaim(const char *name);

a C / C++ API
Also available for:
 Fortran
 Python

PDI Annotation APIPDI Annotation API

 Share
 A buffer is in a coherent 

consistent state
 Reference the buffer

in PDI store

 Reclaim
 The buffer will be reused 

for a different use
 Un-reference the buffer

in PDI store



Oct. 4th, 2022 SISMA 23

PDIPDI: Annotation API usagePDI: Annotation API usage
double* data_buffer = malloc( buffer_size*sizeof(double) );

while ( !computation_finished )
{

compute_the_value_of( data_buffer, /*...*/ );
PDI_share("main_buffer", data_buffer, PDI_OUT);
do_something_without_data_buffer();
do_something_reading( data_buffer, /*...*/ );
PDI_reclaim("main_buffer");
update_the_value_of( data_buffer, /*...*/ );

}

 Creates a “shared region” 
in code where
 Data referenced in PDI 

store
 Plugins can use it

 Code should refrain from
 modifying it (PDI_IN|OUT)
 accessing it (PDI_IN)

 

buffer is shared
● between here
 … 
● and here



Oct. 4th, 2022 SISMA 24

PDIPDI Additional APIPDI Additional API
a C / C++ API

Also available for:
 Fortran
 Python

typedef enum { PDI_IN, PDI_OUT, PDI_INOUT } PDI_inout_t;

// Combine share & expose for 1 piece of data
PDI_status_t PDI_expose(const char *name, void *data, PDI_inout_t access);

// When there is no data… (an interesting location has been reached)
PDI_status_t PDI_event(const char* event);

// And when there is multiple data
PDI_status_t PDI_multi_expose(const char *event_name,
    void *data, PDI_inout_t access,
    …,          …,
    NULL );

 Expose = share + 
reclaim

 Events: similar to 
exposing empty data

 Multi-expose:
 All share
 An event
 All reclaims



Oct. 4th, 2022 SISMA 25

PDIPDI approach: wrap-upPDI approach: wrap-up
➢Write & annotate your code
➢Annotate buffers availability (share / reclaim)
➢Compile and… DONE! (on the code side)

➢Use pre-made plugins or write your own code 
to choose I/O libraries, describe behavior
➢ React to events
➢ Access data in the store

In
 c

o
d

e
In

 Y
A

M
L



Oct. 4th, 2022 SISMA 26

PDIPDI in practice: Decl’HDF5PDI in practice: Decl’HDF5

 Write data in the HDF5 format
 Heavily relies on 

 $-expressions
 default configuration values

 Makes
 Simple things easy
 Complex things possible

PDI_expose("buffer_size", &buffer_size, PDI_OUT);
double* data_buffer = malloc( buffer_size*sizeof(double) );

while ( iteration_id < max_iteration_id )
{

compute_the_value_of( data_buffer, /*...*/ );
PDI_share("main_buffer", data_buffer, PDI_OUT);
do_something_reading( data_buffer, /*...*/ );
PDI_reclaim("main_buffer");

}



Oct. 4th, 2022 SISMA 27

PDI

plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x${rank}.h5'
    write: main_buffer

 Simple to just dump data as HDF5

Decl’HDF5: the YAMLDecl’HDF5: the YAML



Oct. 4th, 2022 SISMA 28

PDI

plugins:
  decl_hdf5:
    file: 'my_file.h5'
    when: '$iteration_id % 100 = 0 & $iteration_id < 10000'
    datasets:
      main_dset: 
        type: array  
        subtype: double 
        Size: [ '($buffer_size - 2) * $np', 100 ]
    write:
      main_buffer:
        memory_selection: { start: 1, size: '$buffer_size - 2' }
        dataset: main_dset
        dataset_selection: 
          start: [ '($buffer_size - 2) * $iteration_id', '$iteration_id/100' ]
          size: [ '$buffer_size - 2', 1 ]
    communicator: $MPI_COMM_WORLD
  mpi:

Decl’HDF5: a complex YAML exampleDecl’HDF5: a complex YAML example

 Possible to do complex rearranging of data in parallel



Oct. 4th, 2022 SISMA 29

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization
Disk



Oct. 4th, 2022 SISMA 30

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization

metadata: { buffer_size: int, 
iteration_id: int, rank: int }
data: { main_buffer: { type: array,  
subtype: double, size: $buffer_size } 
}
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x$
{rank}.h5'
    write: main_buffer

PDI
Store

Disk



Oct. 4th, 2022 SISMA 31

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization

metadata: { buffer_size: int, 
iteration_id: int, rank: int }
data: { main_buffer: { type: array,  
subtype: double, size: $buffer_size } 
}
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x$
{rank}.h5'
    write: main_buffer

Decl’HDF5
plugin

PDI
Store

Disk



Oct. 4th, 2022 SISMA 32

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization

metadata: { buffer_size: int, 
iteration_id: int, rank: int }
data: { main_buffer: { type: array,  
subtype: double, size: $buffer_size } 
}
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x$
{rank}.h5'
    write: main_buffer

Decl’HDF5
plugin

PDI
Store

Disk

Data
references



Oct. 4th, 2022 SISMA 33

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization

metadata: { buffer_size: int, 
iteration_id: int, rank: int }
data: { main_buffer: { type: array,  
subtype: double, size: $buffer_size } 
}
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x$
{rank}.h5'
    write: main_buffer

Decl’HDF5
plugin

PDI
Store

Disk

Data
references

Events



Oct. 4th, 2022 SISMA 34

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization

metadata: { buffer_size: int, 
iteration_id: int, rank: int }
data: { main_buffer: { type: array,  
subtype: double, size: $buffer_size } 
}
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x$
{rank}.h5'
    write: main_buffer

Decl’HDF5
plugin

PDI
Store

Disk

Data
references

Events



Oct. 4th, 2022 SISMA 35

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization

metadata: { buffer_size: int, 
iteration_id: int, rank: int }
data: { main_buffer: { type: array,  
subtype: double, size: $buffer_size } 
}
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x$
{rank}.h5'
    write: main_buffer

Decl’HDF5
plugin

PDI
Store

Disk

Data
references

Events



Oct. 4th, 2022 SISMA 36

PDIPDI: behind the scenePDI: behind the scene

Main loop

Initialization Finalization

metadata: { buffer_size: int, 
iteration_id: int, rank: int }
data: { main_buffer: { type: array,  
subtype: double, size: $buffer_size } 
}
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x$
{rank}.h5'
    write: main_buffer

Decl’HDF5
plugin

Disk

PDI
Store

Data
references

Events



Oct. 4th, 2022 SISMA 37

PDIPDI: The pluginsPDI: The plugins
 IO libraries

 HDF5 / parallel HDF5, NetCDF4 / pNetCDF4, SIONlib

 Special purpose IO
 FTI, ADIOS / SENSEI

 Workflow integration
 Dask w. Deisa, FlowVR, Melissa

 Your own code
 $-expressions based language, Python, C, C++, Fortran



Oct. 4th, 2022 SISMA 38

PDIData coupling with PDI: pycallData coupling with PDI: pycall

 Let you call your own Python code
 Data is exposed as numpy arrays
 Numpy arrays can be re-exposed

 ⇒ In-process post-processing and data transformation

plugins:
  pycall:
    on_event:
      trigger_event_name: # event that triggers the call
        with: { iter: $iteration_id, original_data: $main_field } 
        exec: | 
          if iter<1000:
               new_data = original_data*4 # uses numpy
               pdi.expose('new_data', new_data, pdi.OUT);



Oct. 4th, 2022 SISMA 39

PDIData coupling with PDI: user-codeData coupling with PDI: user-code
plugins:
  user_code:
    on_event:
      trigger_event_name: # event that triggers the call
        function_name { in1: $iteration_id, in2: $main_field } 

void function_name(void)
{

int* iter = NULL; PDI_access("in1", &iter, PDI_IN);
double* main_field = NULL; PDI_access("in2", &iter, PDI_IN);
// …
PDI_release("in2");
PDI_release("in1");

} 

 Let you call your own (C/Fortran) functions
 When performance matters
 To call library APIs not covered by plugins



Oct. 4th, 2022 SISMA 40

PDIPost hoc data analytics with pythonPost hoc data analytics with python

Asahi, Y. & Fujii, K. & Heim, D. & Maeyama, S. & Garbet, X. & Grandgirard, V. & Sarazin, 
Y. & Dif-Pradalier, G. & Idomura, Y. & Yagi, M. (2021). “Compressing the time series of 
five dimensional distribution function data from gyrokinetic simulation using 
principal component analysis”. Physics of Plasmas. 28. 012304. 10.1063/5.0023166.



PDIDask distributed?Dask distributed?
 A scheduler/workers (+client) model to run work (each 

on its own process/node)
 A task-based model to describe work
 Many tools ported to 

dask for ease of use
 Numpy / SciPy
 Scikit-learn
 Pandas
 ...

Dask 
scheduler

…Worker #1 Worker #NWorker #2

Analytics 
client



Oct. 4th, 2022 SISMA 42

PDIPost hoc data analytics with pythonPost hoc data analytics with python

Asahi, Y. & Fujii, K. & Heim, D. & Maeyama, S. & Garbet, X. & Grandgirard, V. & Sarazin, 
Y. & Dif-Pradalier, G. & Idomura, Y. & Yagi, M. (2021). “Compressing the time series of 
five dimensional distribution function data from gyrokinetic simulation using 
principal component analysis”. Physics of Plasmas. 28. 012304. 10.1063/5.0023166.



Oct. 4th, 2022 SISMA 43

PDIPost hoc data analytics with DaskPost hoc data analytics with Dask

Asahi, Y. & Fujii, K. & Heim, D. & Maeyama, S. & Garbet, X. & Grandgirard, V. & Sarazin, 
Y. & Dif-Pradalier, G. & Idomura, Y. & Yagi, M. (2021). “Compressing the time series of 
five dimensional distribution function data from gyrokinetic simulation using 
principal component analysis”. Physics of Plasmas. 28. 012304. 10.1063/5.0023166.



Oct. 4th, 2022 SISMA 44

PDI

Dask 
scheduler

Analytics 
client

Worker #1 Worker #NWorker #2 …

3. task-graph 
submission

4. tasks 
execution

PFS

2. metadata    
 read

5. data read
M

P
I

P0

P1

PM

PDI

PDI

PDI

...

HDF5

HDF5

HDF5
1. data write

● File-system requirements are huge ● File-system performance is 
still an issue○ Let’s run simulation & analysis at the same time

○ Erase files as soon as they are not required anymore

h5py

Yuuichi Asahi (JAEA)
Antoine Lavandier (MdlS)

Dask for post hoc analyticsDask for post hoc analytics
plugins:
  decl_hdf5:
    file: 'my_file_${iteration_id}x${rank}.h5'
    write: main_buffer



Oct. 4th, 2022 SISMA 45

PDI

P0

P1

PM

... Dask 
scheduler

Analytics 
client

…

DEISA
Bridge

DEISA
Bridge

DEISA
Bridge

3. task-graph 
submission

5. tasks 
execution

DEISA
Metadata 
adapter

1. metadata    
 send

5. data send

2. metadata    
 fetch

PDI

PDI

PDI

Worker #1 Worker #NWorker #2

M
P

I

4. contract 
send

Amal Gueroudji (MdlS)
Amal Gueroudji, Julien Bigot, Bruno Raffin. “DEISA: 
dask-enabled in situ analytics.” HiPC 2021 - 28th 
International Conference on High Performance 
Computing, Data, and Analytics, Dec 2021, virtual, India

Dask in situ with DeisaDask in situ with Deisa
plugins:
  deisa:
    scheduler_file: "/home/user/xp/sched.json"
    transfer: { main_field: { when: "$iteration_id>0" } }

Amal Gueroudji. “Distributed Task-Based In 
Situ Data Analytics for High-Performance 
Simulations”. PhD Thesis, Université 
Grenoble Alpes [2020-..], 2023. English.



Oct. 4th, 2022 SISMA 46

PDIDeisa: The analytics codeDeisa: The analytics code

Used in production for g
rand-challenge

on Adastra (C
INES) #10 Top500

Multi-d
ay full-s

cale run on the whole GPU partit
ion



Oct. 4th, 2022 SISMA 47

PDIPDI: Perf. Evaluation 1/2PDI: Perf. Evaluation 1/2

Execution time by MB of 
checkpointed data on 4 
MareNostrum
Nodes with and without PDI

Corentin Roussel (MdlS)
Kai Keller (BSC)

 4 versions of Gysela
 No checkpoint
 HDF5 checkpoints
 FTI fault-tolerance
 PDI (none / HDF5 / FTI / 

HDF5+FTI)



Oct. 4th, 2022 SISMA 48

PDIPDI: Perf. Evaluation 2/2PDI: Perf. Evaluation 2/2

Gysela Wallclock time 
in weak scaling on 
Curie (TGCC – 
France) with and 
without PDI

Checkpointed data 
~2.1GB/node

Corentin Roussel (MdlS)
Kai Keller (BSC)



Oct. 4th, 2022 SISMA 49

PDIPDI: Memory overheadPDI: Memory overhead

Memory usage during a Gysela 
execution with and without PDI on 4 
nodes of MareNostrum (BSC – 
Spain) 

Corentin Roussel (MdlS)
Kai Keller (BSC)



Oct. 4th, 2022 SISMA 50

PDIPDI In practicePDI In practice
 PDI is publicly available (BSD 3-clause license)

 Regular releases since 2014
 Packages available for Debian, Fedora, Ubuntu, Spack
 Documentation & tutorials available @ https://pdi.dev/1.6/
 Heavily tested & validated

 more than 1500 tests…
 …running on more than 12 platforms each

 Integration in production codes
 Gysela, Parflow, ESIAS, Manta?, …

 Part of NumPEx software stack

https://pdi.dev/1.6/


Oct. 4th, 2022 SISMA 51

PDIConclusionConclusion
 An API for Data Coupling, Not an IO library

 A declarative annotation API
 Multiple plugins for and data processing

 Describe your IO from YAML
 Switch to in situ processing or more without even recompiling

 Your turn now!
 Get the doc: https://pdi.dev/master/
 Join the fun on                    https://join.slack.pdi.dev/

https://pdi.dev/master/
https://join.slack.pdi.dev/


Oct. 4th, 2022 SISMA 52

PDI



Oct. 4th, 2022 SISMA 53

PDIPerf evaluation: IORPerf evaluation: IOR

Francesco Iannone 
(ENEA)

IOR IO Benchmark PDI integration

Scaling with small (128k) & large (256M) data blocks 
on CRESCO6



Oct. 4th, 2022 SISMA 54

PDIPreliminary performance evaluationPreliminary performance evaluation
Setup:
 Ruche cluster

 192 nodes (2 CPUs 20 cores each, 180 GB)
 Omni-Path 100 Gbit/s
 Spectrum Scale GPFS (IOs rate: 9 GB/s)

 Mini-app
 2D heat solver
 Incremental Principal Component Analysis



Oct. 4th, 2022 SISMA 55

PDI

● Weak scaling
○ X + Y cores
○ X cores for MPI simu.
○ Y cores for Dask analytics

● No analytics
● vs. Post-hoc
● vs. DEISA

Preliminary performance evaluationPreliminary performance evaluation



Oct. 4th, 2022 SISMA 56

PDIPreliminary performance analysisPreliminary performance analysis



Oct. 4th, 2022 SISMA 57

PDI

*

• IRENE supercomputer @ TGCC, 
France, 

• Nodes:
• 2x24-cores Intel 

Skylake@2.7GHz
• 180GB RAM

• InfiniBand network (100Gb/s),
• Scratch disks: 300GB/s transfer 

rate
• Mini App 2D heat solver

Deisa Performance evaluationDeisa Performance evaluation



Oct. 4th, 2022 SISMA 58

PDI

(reading data 
+ Analytics)

(waiting data
 + Analytics)

(Single-graph)
(Multi-graph) (Multi-graph)

(Single-graph)

(Multi-graph)
(Single-graph)

x3

x7

x1.8

x2.5
x3

DEISA vs Post hoc Weak Scalability DEISA vs Post hoc Weak Scalability 



Oct. 4th, 2022 SISMA 59

PDI

59

x1
6

x7

x2

x2.4

x3

DEISA vs Post hoc efficiency in hour.core DEISA vs Post hoc efficiency in hour.core 



Oct. 4th, 2022 SISMA 60

PDI

*

Multi-graph
-lot 
metadata 
-heartbit=5s

Single-graph
less 
metadata
heartbit=∞ 60

Deisa scheduler-related jitterDeisa scheduler-related jitter


