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a multiscale medium with many obstacles.

Very expensive but still limited simulations on a partial, simplified

assembly.

Is it possible to get an accurate CFD simulation (i.e. Navier-Stokes,
possibly with turbulence models) of the entire core ?




Context (continued)
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Context s continued) 5

Refrain from the idea that a coarse mesh will give usefull
(although not very accurate) information:

On D = (0;1), consider the H}(D) solution of

—0z(A(x)0pu) = f

1
2+ cos(2mx/e)
ua(z) =2 — 22 + O(e).
But if H = ne with n € N*, then a P! Lagrange FE will not
distinguish this from the solution of the same PDE with
B(z) = % (because A and B have the same integral on mesh

_ V3

segments), the solution of which is up(z) = %5 (z — 2?). a_

with A(x) and f = 1. The exact solution is




General idea 6
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Consider the variational formulation: look for u € H}(Q) s.t.

a(u,w) = £(w) Yw € HY(Q) with a(u,w) = /QA(:zr)Vu - V.

Since Hg(£2) has infinite dimension, we choose finite dimensional V,
and W}, (not necessarily included in H}(Q2)) and look for uy, € Vj, s.t.

ah(uh,wh) = Eh(wh) Ywy, € Wp,.

(Galerkin method if W}, =V}, Petrov-Galerkin if not). And V},
approximates well Hg(Q2) when h — 0.

Finite elements are special cases: defined on a mesh with piecewise
polynomial, compactly supported basis functions.

But you can use something else!!! The idea is that basis functions
solve the original PDE on each element of the mesh, with special
boundary conditions (Efendiev and Hou, Multiscale finite elemen
methods. Theory and applications. 2009).
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1
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Basis functions solve —0,(A(z)0,¢;) = 0 with ¢;(x;) = 55

Consider —0,(A(x)0,u) = f with A(z)

standard basis function basis function eps=0.01 ; H=0.1
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When f =1 and g € N using standard basis function
underestimates the exact solution by a factor v/3/2, while the

modified method interpolates it exactly at the nodes (speci
case in 1D).
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Heterogeneous domain Coarse mesh Fine mesh

The MsFEM:
» (Petrov-)Galerkin method on the coarse mesh,

» Basis/Test functions will not be standard (polynomial) FE
basis functions,

» They solve a certain PDE on each element of the coarse
mesh with special boundary conditions,

» Approximations of these basis functions are computed on

the fine mesh (e.g. by standard FEs). @_




General idea (continued) 9

Assume a mesh with N coarse cells; each made of n fine cells.
Instead of a global problem with size O(/N x 1), the multi-scale
strategy has the following advantages:
» Meshing can be done in parallel, at least for
non-conforming methods as will be discussed here,
» Solutions of O(/V) local problems of size O(n) may be
performed in parallel, since they are independent,

» Assembling the coarse problem can be done in parallel,

v

Solution of coarse problem of size (V) is inexpensive,

» Localised post-processing and visualisation of results is also

without extra cost.
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Assume the variational formulation of the original (linear)
problem reads: find u € V s.t. a(u,w) =4(w) , Yw € V.

The idea is to decompose u = u + ug, with ugy € Vi the space
of "resolved parts” and ug € V) the space of "unresolved parts”.

Then a(u,wH) = (l(u[[, lL‘[[) + CL(’LL(),U)H) = E(’LUH) , Ywg € Wg.

And if a(up, wr) = 0 then we can "forget” the unresolved
part ug and solve for the resolved part uy through:

Find ug € Vi s.t. alug,wy) = wy) , Ywg € Wy

provided this problem has a (unique) solution.




General idea (continued) 11

So the steps of the method are

» Choose an (infinite dimensional) space V{ of unresolved
parts of the solution,

» Identify the "orthogonal” space W such that
a(vo,wgr) = 0 for all (vo,wr) € Vo x W,

» Find an appropriate supplementary subspace Vi of V4 such
that the problem

Find ug € Vg s.t. a(lug,wy) = l(wy) , Ywg € Wi

has a unique solution,

» Identify and (numerically) construct basis of Vg and Wy

and write the (Petrov-)Galerkin method in Viy x Wy. a_
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Consider —0,.(v(x)0,u) + a(x)0,u+ r(x)u = [ (+ HD BC).
Multi-scale may be needed because coefficients v, a and r may

be changing on a (too) fine scale.

Let us first consider a coarse mesh T, = U;T; = ), with

T; = [xi—1,z;] and i € [1, N].

e We set Vo = {ve H}Q),v(x;) =0, Vie[0,N]}. (! Works
only in 1D !)

If u = ug + up then ug(x;) = u(x;). We'll have that uy has the
exact values of u at the vertices.

e For a(u,v) = [(vu'v' + avw'v + ruv)(z)dz, what will be W7

(Recall that we need to have a(ug,wr) = 0, for all ug € V) and

all wy, € Wg) a_




Example in 1D (continued)

Sufficient condition (it can be proved that it is also necessary):
(wp )7, satisfying —(vwy)" — (awpy)' + rwy = 0 on each T; and
continuity at the nodes. Indeed, Let ug € Vj:

a(ug,wry) = Z/ (vupwy + augwy + ruowp ) (z)dx
i T
= Z [(I/w'H + awpy) uo]zil

+ Z/ (—(vwhy) = (awgy) + rwg)ug(z)dz = 0.
i YT

A basis (¢i)ien,n—1) of Wi can be constructed by (numerically)
solving 7(1_/(;’);)’ — (ag;) +ro; =0 on [z;—1,x;]) U[zi, xiy1] with
di(z;) = 07.
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Unless a = 0 (vanishing convection), there is no reason to
choose Vg = Wy. We choose

Vi = {vg € H}(Q) s.t. — (vly) + awly + rwg = 0 on T}

A basis (1i)ie;1,n—1] of Vi can be constructed by (numerically)
solving — (1)) + ay] + i = 0 on [v—1, 2] U[2i, i11] with
Vi(zj) =67

Solvability of the Petrov-Galerkin scheme? Yes according to

Altmann, Henning, Peterseim, Acta Numerica 2021 (very ggod
paper on numerical homogenization and multi-scale analysis)




Consequences for —vu” + au’ = f + Dirichlet B.C. 15

Test functions of Wy solve —v¢! — a¢’ = 0 with ¢;(z;) = f———
Basis functions of Vi solve —v¢)f' + ay)’ = 0 with ¢;(z;) = &7.

basis function (a/nu = 10, h = 0,1) basis function (a/nu = 100, h = 0,1)

1r ‘ ‘ ‘ 1+ ‘ ‘ ‘
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0 ‘ ‘ ‘ 0 ‘ ‘ ‘
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Coefficients of the associated matrix are

A = a A exp(—ah/v)
bl o exp(—ah/v) " - exp(—ah/v)

Aii = |Aii—1| + |Aii+1]. No oscillations whatever the size of “1#!
And if (f, ¢;) may be computed exactly, we find that




Consequences for —u” = f + Dirichlet B.C. 16

Here ¢; solves —¢” = 0 and so ¢; is the standard P; Lagrange
hat function (V is the P, Lagrange FE space).

As a consequence, if you are able to evaluate exactly (f, ¢;)
then wp(z;) = u(z;) (which is a known fact using a Green
function analysis). The error e = (u — uy) solves —¢” = [ on
each T; with e(x;) = 0 for all 4, so:

e The solution may be refined by solving these independent
problems (in parallel).

e The numerical analysis is easy (don’t need to use Céa’s
lemma nor Aubin-Nitsche’s trick nor any knowledge on
polynomial approximation, only Poincaré’s inequality):

'l = (f,e)z < [Ifllzllellr; < CHIf M| |le’[|z:-
And so ||¢/||z, < CH||f||z, and [lellr, < C2H?||f]|r,.




Example in 1D (continued) Higher-order schemes? 17

e Choose p € N. We set Vo(p) ={ve H}Q),v(x;) =0, Vi€
[0, N] and [, v(x)ahdr = 0,Y(i, k) € [1,N] x [0,p]}.

e What will be W7
If wy in Hy () is such that (wg)7, is a polynomial of order
p + 2, then for ug € Vg

[ viwtytaide = 3 (= [ w1t + gl ) =o.

7 vl

Thus WI(JP ) is the P, 5 Lagrange FE. If evaluation of (f, wg) is
exact, uy will have exact values at x; and exact moments
against all polynomials of degree < p over each T;.

Since the operator is symmetric, we choose V(p ) = W(p ) @_




Multi-D NC MS FE for fluid flow problems 18

The Stokes problem with unknowns u € H}(Q)%, p € L2(Q)
((1,p), (v,0)) = v(V, V) = (0, V- v) = (V -1, ) = (£,v).

Based on a coarse mesh with elements T and faces E, we set

et _ { ue (L2(99)" s. t. ulpe (H (T nQ9)) vT }
u=0o0nd0, [ o[u] - wp;=0VE, j=1,---,s [’
The space V¢! extends the natural velocity space (H& (Qa))d;
the MsFEM is nonconforming.

Span(wp ;) = (P,(E))%. The case n = 0 was treated by Muljadi,
Narski, Lozinski, Degond (2015) (see also Le Bris, Legoll,
Lozinksi, 2012, 2014 for elliptic problems). We introduced and
treated the theory for the case n > 0, (Feng, Allaire, Omnes,

2022), and implemented n = 1,2 (Balazi). a_




Multi-D fluid flows (Continued) 19
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e Definition of spaces of ”unresolved” fields:

Vi ueVE s b [pog-us WEJ 0, jTﬂQEu 90Tk’—0
=\ VI eTy, VEE€Ey, j=1,- k=1, :

]Vfoz{pej\/fs.t./ prJ':(),VTGTH,jzl,-~,t}.
TNOE

The right combination is: Span(wp ;) = (7,(£))4,

Span(prx) = (Pa_1(T))® and Span(wr,;) = Po(T).

Enriching only the set of edge weights wp ; is insufficient: a
given function u vanishing on the edges of any 7" would belong

to the unresolved fine scales whatever the number of edge

weights.




Multi-D fluid flows (Continued) 20
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Since V£ is not included in (HE(2))¢, we define the ”broken”
bilinear form cp by

c((u,p), (v,q)) = T;H /TOQE (uVu:Vv —pV-v—¢qV-u).

e Space Xy that is "orthogonal” to Xg := Vy x M i.e.
(u,p) € Xp, <= cp((u,p),(v,q)) =0, Y(v,q) € Xo:

My ={q€ Ms. t. q|re P,(T), VT € Ty} ,=Ppdise

v E <L2 (Q‘E)>d VT € Ty, 3T € My(T) such that
—pAv + V(T € span {or1,-- ,or,} In TNQE

Vy = V-vespan{wry, - ,wr:} in TNO°
v=0ondB*NT
pVvn — (Tn € span{wg1, - ,wpst

on ENQEVE € E(T)




Multi-D fluid flows (Continued) 21
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Xu =span{(uy, 7y (ug) +pu) ,uyg € Vu, py € My} .

with g (ug ) := ¢T of the definition above.
Basis function @ ; associated to edge F and weight wg ;:

(—qu)E,i + Vg € span{er, 1, @7} in T NQ°,
div ®p; € span {wr, 1, w7, } in T NQF,
pV®gin —7mpn € span{wp, - ,wpfon FNQE, VE € E(Ty),
®p;=0o0n0B° NTy,
5ij, F=E

fFrms Ppi-wrj = { 0, F+#E

,j:jiﬂfzf (I’E=i "PTL = ovi=1,---,r,

meOf TE  @hy,m =0Vm=1,--- t.

VF e &(Ty), Vi=1,--,s,




Multi-D fluid flows (Continued) 22
P———e

Basis function W, associated to element T" and weight ¢ :

—puA®T 4+ Vrr), € span {pr1, -+ o1} in TNOE,
div Wry € span {wr1, - ,wrs} in TNOQS,

pNV®rpn — mrpn € span {wry, - ,wrs} on FNQE, VF € £(T),
Wy =00ndB*NT,

Jrna: ¥k - wr; =0VF € E(T), Vj=1,--- s,

Jrea: BTk Ty =0 V=1, 7,
Srnge Tk - @Tm = 0Vm =1, ,t.

Because of the extra Lagrange multiplier, special FEs are

needed to solve these problems (see L. Balazi) @_




Multi-D fluid flows (Continued) 23
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e .= 0: Pressures (pg)r are in Py(T) (as in CR). The Stokes
like problem reads on each T’

—puAv + V(T =0,
V-v=a€eR,
fTCT:())
v=0o0n00*NT,
pVvn —(Tn=\eR?

If no obstacle, v € P;(T) and ¢T = 0. We recover the low-order

Crouzeix-Raviart P{¥C /Py scheme.
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Multi-D fluid flows (Continued)

With obstacles in T":
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Multi-D fluid flows (Continued) 25
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fEuE,l ‘e =1, fEuEJ ~eg =0, fE,uE,1 ce; = 0.
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Jpup2-e2=1, [pugy-e; =0, [ ups-e; =0.
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Back to the resolved spaces:
e n = 1: Pressures (py)r are in PU(T). The Stokes like
problem reads on each T

—pAvV + V¢ = e RY
V-ve Pl(T),
Jp¢Tq=0,Yq € P (T)
v=0o0nd0NT,
pVvn —(¢Tn € (P(E))4,

If no obstacle, v € P»(T) and (7 = 0 belong to the space, but

they are not alone.
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v

Fa

Channel flow with obstacles and 4 x 4 x 4 coarse triangles n = 2

and reference calculation
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Oseen flow with Uy = (400, —400)

and 26 obstacles of size 1.5 x 1072

,.ol:‘ M - ,j{‘: ‘ h‘ .Q .
n =1, from left to right, top to bottom: 4 x 8 x 4 coarse
triangles, 8 x 16 x 4 triangles, 16 x 32 x 4 triangles, reference on
a fine mesh with 2 million triangles.
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» Construction of Multi-Scale Finite Elements

v

Provides new insight on Standard Finite Elements

» Can reproduce complex fluid flows with low cost

» More tests with Oseen and Navier-Stokes flows

» A priori and a posteriori analysis including effects of
approximate resolution of fine-scale basis functions

» Non-stationary problems

v

Non-linear problems: turbulence modelling

» Links with Domain Decomposition
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