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Context: very heterogeneous media

General idea of the Multi-scale finite elements

An abstract setting for the construction of such methods

Example in 1D; interesting consequences for standard FEs;
(new) Petrov-Galerkin methods for convection diffusion

Extension to multi-D with non-conforming finite elements for
fluid flow problems

Conclusions and perspectives
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Nuclear reactor core: a multiscale medium with many obstacles.

Very expensive but still limited simulations on a partial, simplified

assembly.

Is it possible to get an accurate CFD simulation (i.e. Navier-Stokes,

possibly with turbulence models) of the entire core ?



Context (continued) 4

Composite materials Underground



Context (continued) 5

Refrain from the idea that a coarse mesh will give usefull
(although not very accurate) information:

On D = (0; 1), consider the H1
0 (D) solution of

−∂x(A(x)∂xu) = f

with A(x) =
1

2 + cos(2πx/ε)
and f = 1. The exact solution is

uA(x) = x− x2 +O(ε).
But if H = nε with n ∈ N∗, then a P 1 Lagrange FE will not
distinguish this from the solution of the same PDE with
B(x) = 1√

3
(because A and B have the same integral on mesh

segments), the solution of which is uB(x) =
√
3
2 (x− x2).
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Consider the variational formulation: look for u ∈ H1
0 (Ω) s.t.

a(u,w) = ℓ(w) ∀w ∈ H1
0 (Ω) with a(u,w) =

∫
Ω

A(x)∇u · ∇w.

Since H1
0 (Ω) has infinite dimension, we choose finite dimensional Vh

and Wh (not necessarily included in H1
0 (Ω)) and look for uh ∈ Vh s.t.

ah(uh, wh) = ℓh(wh) ∀wh ∈Wh.

(Galerkin method if Wh = Vh, Petrov-Galerkin if not). And Vh
approximates well H1

0 (Ω) when h −→ 0.

Finite elements are special cases: defined on a mesh with piecewise
polynomial, compactly supported basis functions.
But you can use something else!!! The idea is that basis functions
solve the original PDE on each element of the mesh, with special
boundary conditions (Efendiev and Hou, Multiscale finite element
methods. Theory and applications. 2009).



General idea (continued) 7

Consider −∂x(A(x)∂xu) = f with A(x) =
1

2 + cos(2π x
ε )

.

Basis functions solve −∂x(A(x)∂xϕi) = 0 with ϕi(xj) = δji .
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When f ≡ 1 and H
ε ∈ N using standard basis function

underestimates the exact solution by a factor
√
3/2, while the

modified method interpolates it exactly at the nodes (special
case in 1D).
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Heterogeneous domain Coarse mesh Fine mesh

The MsFEM:

▶ (Petrov-)Galerkin method on the coarse mesh,

▶ Basis/Test functions will not be standard (polynomial) FE
basis functions,

▶ They solve a certain PDE on each element of the coarse
mesh with special boundary conditions,

▶ Approximations of these basis functions are computed on
the fine mesh (e.g. by standard FEs).



General idea (continued) 9

Assume a mesh with N coarse cells; each made of n fine cells.
Instead of a global problem with size O(N × n), the multi-scale
strategy has the following advantages:

▶ Meshing can be done in parallel, at least for
non-conforming methods as will be discussed here,

▶ Solutions of O(N) local problems of size O(n) may be
performed in parallel, since they are independent,

▶ Assembling the coarse problem can be done in parallel,

▶ Solution of coarse problem of size O(N) is inexpensive,

▶ Localised post-processing and visualisation of results is also
without extra cost.
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Assume the variational formulation of the original (linear)
problem reads: find u ∈ V s.t. a(u,w) = ℓ(w) , ∀w ∈ V .

The idea is to decompose u = uH + u0, with uH ∈ VH the space
of ”resolved parts” and u0 ∈ V0 the space of ”unresolved parts”.

Then a(u,wH) = a(uH , wH) + a(u0, wH) = ℓ(wH) , ∀wH ∈WH .

And if a(u0, wH) = 0 then we can ”forget” the unresolved
part u0 and solve for the resolved part uH through:

Find uH ∈ VH s.t. a(uH , wH) = ℓ(wH) , ∀wH ∈WH

provided this problem has a (unique) solution.



General idea (continued) 11

So the steps of the method are

▶ Choose an (infinite dimensional) space V0 of unresolved
parts of the solution,

▶ Identify the ”orthogonal” space WH such that
a(v0, wH) = 0 for all (v0, wH) ∈ V0 ×WH ,

▶ Find an appropriate supplementary subspace VH of V0 such
that the problem

Find uH ∈ VH s.t. a(uH , wH) = ℓ(wH) , ∀wH ∈WH

has a unique solution,

▶ Identify and (numerically) construct basis of VH and WH

and write the (Petrov-)Galerkin method in VH ×WH .



Example in 1D Convection - Diffusion - Reaction 12

Consider −∂x(ν(x)∂xu) + a(x)∂xu+ r(x)u = f (+ HD BC).

Multi-scale may be needed because coefficients ν, a and r may
be changing on a (too) fine scale.

Let us first consider a coarse mesh Th = ∪iTi = Ω, with
Ti = [xi−1, xi] and i ∈ [1, N ].

• We set V0 = {v ∈ H1
0 (Ω), v(xi) = 0 , ∀i ∈ [0, N ]}. (! Works

only in 1D !)

If u = uH + u0 then uH(xi) = u(xi). We’ll have that uH has the
exact values of u at the vertices.

• For a(u, v) =
∫
Ω(νu

′v′ + au′v + ruv)(x)dx, what will be WH?

(Recall that we need to have a(u0, wH) = 0, for all u0 ∈ V0 and
all wh ∈WH)



Example in 1D (continued) 13

Sufficient condition (it can be proved that it is also necessary):
(wH)|Ti

satisfying −(νw′
H)′ − (awH)′ + rwH = 0 on each Ti and

continuity at the nodes. Indeed, Let u0 ∈ V0:

a(u0, wH) =
∑
i

∫
Ti

(νu′0w
′
H + au′0wH + ru0wH)(x)dx

=
∑
i

[
(νw′

H + awH)u0
]xi

xi−1

+
∑
i

∫
Ti

(−(νw′
H)′ − (awH)′ + rwH)u0(x)dx = 0.

A basis (ϕi)i∈[1,N−1] of WH can be constructed by (numerically)
solving −(νϕ′i)

′ − (aϕi)
′ + rϕi = 0 on [xi−1, xi]

⋃
[xi, xi+1] with

ϕi(xj) = δji .
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Unless a = 0 (vanishing convection), there is no reason to
choose VH =WH . We choose

VH = {vH ∈ H1
0 (Ω) s.t. − (νv′H)′ + aw′

H + rwH = 0 on Ti}

A basis (ψi)i∈[1,N−1] of VH can be constructed by (numerically)
solving −(νψ′

i)
′ + aψ′

i + rψi = 0 on [xi−1, xi]
⋃
[xi, xi+1] with

ψi(xj) = δji .

Solvability of the Petrov-Galerkin scheme? Yes according to
Altmann, Henning, Peterseim, Acta Numerica 2021 (very ggod
paper on numerical homogenization and multi-scale analysis)



Consequences for −νu′′ + au′ = f + Dirichlet B.C. 15

Test functions of WH solve −νϕ′′i − aϕ′ = 0 with ϕi(xj) = δji .

Basis functions of VH solve −νψ′′
i + aψ′ = 0 with ψi(xj) = δji .
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Coefficients of the associated matrix are

Ai,i−1 = − a

1− exp(−ah/ν)
, Ai,i+1 = − a exp(−ah/ν)

1− exp(−ah/ν)

Ai,i = |Ai,i−1|+ |Ai,i+1|. No oscillations whatever the size of ah
ν !

And if (f, ϕi) may be computed exactly, we find that
uH(xi) = u(xi).



Consequences for −u′′ = f + Dirichlet B.C. 16

Here ϕi solves −ϕ′′i = 0 and so ϕi is the standard P1 Lagrange
hat function (VH is the P1 Lagrange FE space).

As a consequence, if you are able to evaluate exactly (f, ϕi)
then uH(xi) = u(xi) (which is a known fact using a Green
function analysis). The error e = (u− uH) solves −e′′ = f on
each Ti with e(xi) = 0 for all i, so:

• The solution may be refined by solving these independent
problems (in parallel).

• The numerical analysis is easy (don’t need to use Céa’s
lemma nor Aubin-Nitsche’s trick nor any knowledge on
polynomial approximation, only Poincaré’s inequality):

||e′||2Ti
= (f, e)Ti ≤ ||f ||Ti ||e||Ti ≤ CH||f ||Ti ||e′||Ti .

And so ||e′||Ti ≤ CH||f ||Ti and ||e||Ti ≤ C2H2||f ||Ti .



Example in 1D (continued) Higher-order schemes? 17

• Choose p ∈ N. We set V
(p)
0 = {v ∈ H1

0 (Ω), v(xi) = 0 , ∀i ∈
[0, N ] and

∫
Ti
v(x)xkdx = 0, ∀(i, k) ∈ [1, N ]× [0, p]}.

• What will be W
(p)
H ?

If wH in H1
0 (Ω) is such that (wH)|Ti

is a polynomial of order
p+ 2, then for u0 ∈ V0

∫
Ω
u′0w

′
H(x)dx =

∑
i

(
−
∫
Ti

u0w
′′
H(x)dx+ [u0w

′
H ]xi

xi−1

)
= 0.

Thus W
(p)
H is the Pp+2 Lagrange FE. If evaluation of (f, wH) is

exact, uH will have exact values at xi and exact moments
against all polynomials of degree ≤ p over each Ti.

Since the operator is symmetric, we choose V
(p)
H =W

(p)
H .



Multi-D NC MS FE for fluid flow problems 18

The Stokes problem with unknowns u ∈ H1
0 (Ω)

d, p ∈ L2
0(Ω).

c((u, p), (v, q)) := ν(∇u,∇v)− (p,∇ · v)− (∇ · u, q) = (f ,v).

Based on a coarse mesh with elements T and faces E, we set

V ext =

{
u ∈

(
L2 (Ωε)

)d
s. t. u |T∈

(
H1 (T ∩ Ωε)

)d ∀T
u = 0 on ∂Ωε,

∫
E∩Ωε [[u]] · ωE,j = 0∀E, j = 1, · · · , s

}
,

The space V ext extends the natural velocity space
(
H1

0 (Ω
ε)
)d
;

the MsFEM is nonconforming.
Span(ωE,j) = (Pn(E))d. The case n = 0 was treated by Muljadi,
Narski, Lozinski, Degond (2015) (see also Le Bris, Legoll,
Lozinksi, 2012, 2014 for elliptic problems). We introduced and
treated the theory for the case n > 0, (Feng, Allaire, Omnes,
2022), and implemented n = 1, 2 (Balazi).



Multi-D fluid flows (Continued) 19

• Definition of spaces of ”unresolved” fields:

V0 =

{
u ∈ V ext

H s. t.
∫
E∩Ωε u · ωE,j = 0,

∫
T∩Ωε u · φT,k = 0,

∀T ∈ TH , ∀E ∈ EH , j = 1, · · · , s, k = 1, · · · , r.

}
,

M0 =

{
p ∈M s. t.

∫
T∩Ωε

pϖT,j = 0, ∀T ∈ TH , j = 1, · · · , t
}
.

The right combination is: Span(ωE,j) = (Pn(E))d,
Span(φT,k) = (Pn−1(T ))

d and Span(ϖT,j) = Pn(T ).
Enriching only the set of edge weights ωE,j is insufficient: a
given function u vanishing on the edges of any T would belong
to the unresolved fine scales whatever the number of edge
weights.



Multi-D fluid flows (Continued) 20

Since V ext
H is not included in (H1

0 (Ω))
d, we define the ”broken”

bilinear form cH by

cH((u, p), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇u : ∇v − p∇ · v − q∇ · u) .

• Space XH that is ”orthogonal” to X0 := V0 ×M0 i.e.
(u, p) ∈ Xh ⇐⇒ cH((u, p), (v, q)) = 0 , ∀(v, q) ∈ X0:

MH = {q ∈M s. t. q |T∈ Pn(T ), ∀T ∈ TH} ,= Pdisc
n

VH =



v ∈
(
L2 (Ωε)

)d
: ∀T ∈ TH , ∃ζT ∈M0(T ) such that

−µ∆v +∇ζT ∈ span {φT,1, · · · , φT,r} in T ∩ Ωε

∇ · v ∈ span {ϖT,1, · · · , ϖT,t} in T ∩ Ωε

v = 0 on ∂Bε ∩ T
µ∇vn− ζTn ∈ span {ωE,1, · · · , ωE,s}
on E ∩ Ωε ∀E ∈ E(T )


,



Multi-D fluid flows (Continued) 21

XH = span {(uH , πH (uH) + p̄H) ,uH ∈ VH , p̄H ∈MH} .

with πH(uH)|T := ζT of the definition above.
Basis function ΦE,i associated to edge E and weight ωE,i:



−µ∆ΦE,i +∇πE,i ∈ span {φTk,1, · · · ,φTk,r} in Tk ∩ Ωε,

div ΦE,i ∈ span {ϖTk,1, · · · , ϖTk,t} in Tk ∩ Ωε,

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk),
ΦE,i = 0 on ∂Bε ∩ Tk,∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F ̸= E
∀F ∈ E (Tk) , ∀j = 1, · · · , s,∫

Tk∩Ωε ΦE,i ·φTk,l = 0 ∀l = 1, · · · , r,∫
Tk∩Ωε πE,i ·ϖTk,m = 0 ∀m = 1, · · · , t.
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Basis function ΨT,k associated to element T and weight φT,k:



−µ∆ΨT,k +∇πT,k ∈ span {φT,1, · · · ,φT,r} in T ∩ Ωε,

div ΨT,k ∈ span {ϖT,1, · · · , ϖT,t} in T ∩ Ωε,

µ∇ΨT,kn− πT,kn ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T ),
ΨT,k = 0 on ∂Bε ∩ T,∫
F∩Ωε ΨT,k · ωF,j = 0 ∀F ∈ E (T ) , ∀j = 1, · · · , s,∫
T∩Ωε ΨT,k ·φT,l = δkl ∀l = 1, · · · , r,∫
T∩Ωε πT,k ·ϖT,m = 0 ∀m = 1, · · · , t.

Because of the extra Lagrange multiplier, special FEs are
needed to solve these problems (see L. Balazi)
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• n = 0: Pressures (p̄H)T are in P0(T ) (as in CR). The Stokes
like problem reads on each T

−µ∆v +∇ζT = 0,
∇ · v = α ∈ R,∫
T ζ

T = 0,
v = 0 on ∂Ωε ∩ T,
µ∇vn− ζTn = λ ∈ Rd,

If no obstacle, v ∈ P1(T ) and ζ
T = 0. We recover the low-order

Crouzeix-Raviart PNC
1 /P0 scheme.
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With obstacles in T :
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∫
E uE,1 · e1 = 1,

∫
E uE,1 · e2 = 0,

∫
E′ uE,1 · ej = 0.
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∫
E uE,2 · e2 = 1,

∫
E uE,2 · e1 = 0,

∫
E′ uE,2 · ej = 0.
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Back to the resolved spaces:
• n = 1: Pressures (p̄H)T are in P disc

1 (T ). The Stokes like
problem reads on each T

−µ∆v +∇ζT = µ ∈ Rd,
∇ · v ∈ P1(T ),∫
T ζ

T q = 0, ∀q ∈ P1(T )
v = 0 on ∂Ωε ∩ T,
µ∇vn− ζTn ∈ (P1(E))d,

If no obstacle, v ∈ P2(T ) and ζ
T = 0 belong to the space, but

they are not alone.
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∫
E u · ωE,j = 0,

∫
T u · e1 = 1,

∫
T u · e2 = 0.
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Channel flow with obstacles and 4× 4× 4 coarse triangles n = 2
and reference calculation
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Oseen flow with U0 = (400,−400) and 26 obstacles of size 1.5× 10−2

n = 1, from left to right, top to bottom: 4× 8× 4 coarse
triangles, 8× 16× 4 triangles, 16× 32× 4 triangles, reference on
a fine mesh with 2 million triangles.
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▶ Construction of Multi-Scale Finite Elements

▶ Provides new insight on Standard Finite Elements

▶ Can reproduce complex fluid flows with low cost

▶ More tests with Oseen and Navier-Stokes flows

▶ A priori and a posteriori analysis including effects of
approximate resolution of fine-scale basis functions

▶ Non-stationary problems

▶ Non-linear problems: turbulence modelling

▶ Links with Domain Decomposition
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