Global entropy stability for a class of unlimited high-order schemes for hyperbolic systems of conservation laws

Christophe Berthon, Nantes Université, LMJL joint work with Mehdi Badsi and Ludovic Martaud

CEA 19th January 2023

Context

For the unknown $w(x,t)\in\Omega\subset\mathbb{R}^d$, we consider the Cauchy problem

$$\partial_t w + \partial_x f(w) = 0,$$
 $(x, t) \in \mathbb{R} \times (0, +\infty)$
 $w(x, t = 0) = w_0(x)$

With the Jacobian $\nabla f(u)$ diagonalizable in \mathbb{R} so that the system is hyperbolic

- For genuine non linear equations, the solutions w may develop discontinuities
- Dicontinuities may implay lost of uniqueness
- To recover uniqueness ----- Introduction of local entropy inequalities

$$\partial_t \eta(w) + \partial_x Q(w) \leq 0 \text{ in } \mathcal{D}'((0, +\infty) \times \mathbb{R})$$

for any pair entropy-entropy flux $\eta \in C^1(\Omega; \mathbb{R})$ convex and $Q \in C^1(\Omega; \mathbb{R})$ defined by

$$\nabla \eta(w)^T \nabla f(w) = \nabla Q(w)^T$$

- Weak entropy principle (global)

$$\int_{\mathbb{R}} \eta(w(x,t)) dx \leqslant \int_{\mathbb{R}} \eta(w(x,s)) dx \qquad t > s \ge 0$$

Global entropy stability for unlimited high-order schemes for hyperbolic systems 1 / 27

Finite-volume schemes and space-consistency

Mesh definition:
$$\Delta x, \Delta t > 0, C_i := (x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}), x_{i+\frac{1}{2}} = i\Delta x \pm \frac{\Delta x}{2}, t^n = n\Delta t$$

Numerical approximation

$$\forall n \in \mathbb{Z}, i \in \mathbb{Z}, \quad \frac{w_i^{n+1} - w_i^n}{\Delta t} + \frac{F_{i+\frac{1}{2}}^n - F_{i-\frac{1}{2}}^n}{\Delta x} = 0$$

where $w_i^n \approx \frac{1}{\Delta x} \int_{C_i} w(t^n, x) dx$.

Definition (Formal consistency)

Let $r \in \mathbb{N}^*$ and $F : \Omega^{2r+2} \to \mathbb{R}$ a continuous function such that F(w, ..., w) = f(w). A finite volume scheme with a numerical flux $F_{i+\frac{1}{2}}^n = F(w_{i-r}^n, ..., w_{i+r+1}^n))$ is formally second-order consistent in space if for a smooth compactly supported function w(x) and for all $i \in \mathbb{Z}$,

$$F_{i+\frac{1}{2}} = f(w(x_{i+\frac{1}{2}})) + \mathcal{O}(\Delta x^2), \quad w_i = \frac{1}{\Delta x} \int_{C_i} w(x) dx,$$

where the function $\mathcal{O}(\Delta x^2)$ is independent on $i \in \mathbb{Z}$.

- The centered flux $F_{i+\frac{1}{2}}^n = \frac{f(w_i^n) + f(w_{i+1}^n)}{2}$ is second-order (but not stable)
- The HLL flux $F_{i+\frac{1}{2}}^n = \frac{f(w_i^n) + f(w_{i+1}^n)}{2} \frac{\lambda}{2}(w_{i+1}^n w_i^n)$ is first-order.

Global entropy stability for unlimited high-order schemes for hyperbolic systems

Challenge: design a **true high-order** in space numerical methods that verifies a discrete entropy inequality (local or global)

- An entropy preserving 3-point scheme is at most first-order accurate
- MUSCL strategy: lost of order
- Entropy variable strategy (Tadmor): semi-discrete entropy inequality
- Nonlinear projection strategy (LefLoch, Coquel)
- Global entropy estimations (Mishra, Parés)
- Artificial viscosity (Abgrall, Tadmor)
- Implicit schemes (Dumbser)
- Multi-cells entropy inequalities (Ricchiuto)

Second-order in space dissipative schemes

A second-order in space finite-volume scheme

High-order HLL scheme

$$F_{i+\frac{1}{2}}^{O2} := \frac{f(w_i^n) + f(w_{i+1}^n)}{2} - \frac{\lambda}{2}(w_{i+1}^n - w_i^n) + \frac{(\alpha_i^{O2} + \alpha_{i+1}^{O2})}{2}$$

 $(\alpha_i)_{i\in\mathbb{Z}}$ ensures the formal second-order consistency of the flux For a smooth function w(x), set

$$w_i := \frac{1}{\Delta x} \int_{C_i} w(x) dx$$

Taylor expansion around $x_{i+\frac{1}{2}}$ yields

$$F_{i+\frac{1}{2}}^{O2} = f(w(x_{i+\frac{1}{2}})) - \frac{\lambda \Delta x}{2} \partial_x w(x_{i+\frac{1}{2}}) + \mathcal{O}(\Delta x^2) + \frac{(\alpha_i^{O2} + \alpha_{i+1}^{O2})}{2}$$

The formal second-order consistency in space is ensured provided:

$$\alpha_i^{O2} = \frac{\lambda \Delta x}{2} \partial_x w(x_{i+\frac{1}{2}}) + \mathcal{O}(\Delta x^2).$$

The approximation formulas of the spatial derivative of $\partial_x w(x_{i+\frac{1}{2}})$ are degrees of freedom.

Global entropy stability for unlimited high-order schemes for hyperbolic systems 4 / 27

Key idea: Choose $(\alpha_i)_{i \in \mathbb{Z}}$ in such a way that:

- The formal second order consistency statement holds:

$$\alpha_i^{O2} = \frac{\lambda \Delta x}{2} \partial_x w(x_{i+\frac{1}{2}}) + \mathcal{O}(\Delta x^2).$$

- The following dissipativity inequality relatively to a given entropy η is verified for non trivial state $(w_i^n)_{i \in \mathbb{Z}}$:

$$\sum_{i\in\mathbb{Z}}\left(F_{i+\frac{1}{2}}^{O2}-F_{i-\frac{1}{2}}^{O2}\right)\cdot\nabla\eta(w_i^n)>0.$$

A possibility (among many others) is to set:

$$\begin{split} \alpha_i^{O2} &:= \frac{\lambda \Delta x \partial_x w_i^{O2}}{2} \\ \Delta x \partial_x w_i^{O2} &:= \Theta_i \delta_{i+\frac{1}{2}} + (1 - \Theta_i) \delta_{i-\frac{1}{2}}, \quad \delta_{i+\frac{1}{2}} = w_{i+1}^n - w_i^n \end{split}$$

where $(\Theta_i)_{i \in \mathbb{Z}}$ is a sequence of diagonal matrices bounded as $\Delta x \to 0$ chosen such that the entropy dissipation inequality holds

Global entropy stability for unlimited high-order schemes for hyperbolic systems 5 / 27

Main result

Theorem

Consider $\eta \in C^2(\Omega, \mathbb{R})$ a strictly convex entropy. Let the approximation at time t^n , $(w_i^n)_{i \in \mathbb{Z}}$ being a non zero sequence in $h^2(\mathbb{Z})$ and such that $\sum_{i \in \mathbb{Z}} \eta(w_i^n) \Delta x$ is finite. We assume the following:

- a) There exists a compact set $K \subset \Omega$ such that $w_i^n \in K$ for every $i \in \mathbb{Z}$.
- b) The sequence of bounded (as $\Delta x \rightarrow 0$) diagonal matrices $(\Theta_i)_{i \in \mathbb{Z}}$ satisfies for all $i \in \mathbb{Z}$ the entropy dissipative inequality

$$\sum_{i\in\mathbb{Z}} \left(F_{i+\frac{1}{2}}^{O2} - F_{i-\frac{1}{2}}^{O2} \right) \cdot \nabla \eta(w_i^n) < 0$$

Then there exists two constants $\lambda^n > 0$ and $C^n > 0$ with $C^n = \mathcal{O}(1)$ such that for any $\lambda > \lambda^n$ and $0 < \frac{\Delta t}{\Delta x^2} \leq C^n$ the second-order scheme

$$\frac{w_i^{n+1} - w_i^n}{\Delta t} + \frac{F_{i+\frac{1}{2}}^{O2} - F_{i-\frac{1}{2}}^{O2}}{\Delta x} = 0.$$

satifies

$$w_i^{n+1} \in \Omega$$
 and $\sum_{i \in \mathbb{Z}} \eta(w_i^{n+1}) \Delta x \leq \sum_{i \in \mathbb{Z}} \eta(w_i^n) \Delta x$

Global entropy stability for unlimited high-order schemes for hyperbolic systems

Main result

Comments:

- The assumption a) is technical. It can be completely removed in the case where $\Omega = \mathbb{R}^d$
- The assumption b) is the dissipative inequality relatively to an entropy η Lot of choices of matrices $(\Theta_i)_{i\in\mathbb{Z}}$ can be exhibited. Form scalar equation with $\eta(w) = w^2/2$

$$\begin{split} \Theta_{i}^{m} &= -\theta_{s} \operatorname{sign}\left((\delta_{i+\frac{1}{2}}^{m})^{2} - (\delta_{i-\frac{1}{2}}^{m})^{2}\right), \\ \Theta_{i}^{m} &= \frac{\left((\delta_{i-\frac{1}{2}}^{m})^{2} - (\delta_{i+\frac{1}{2}}^{m})^{2}\right)\left((\delta_{i-\frac{1}{2}}^{m})^{2} + (\delta_{i+\frac{1}{2}}^{m})^{2}\right)}{\left((\delta_{i-\frac{1}{2}}^{m})^{2} + (\delta_{i+\frac{1}{2}}^{m})^{2}\right)^{2} + \varepsilon} \end{split}$$

- The strict convexity of the entropy is needed in the proof because one needs to get a positive lower bound for the Hessian ∇²η.
- One can recover a hyperbolic CFL condition using a second-order in time discretization.

Main result

• Global entropy and first-order viscosity (Burgers equation and quadratic entropy)

$$\partial_t w + \partial_x w^2 / 2 = \varepsilon \partial_x^2 w$$
$$\partial_t w^2 / 2 + \partial_x w^3 / 3 = \varepsilon w \partial_x^2 w$$
$$= \varepsilon \partial_x (w \partial_x w) - \varepsilon (\partial_x w)^2$$

so that we get

$$\frac{d}{dt}\int_{\mathbb{R}}\frac{1}{2}w^{2}(x,t)dx\leqslant0$$

Global entropy and second-order viscosity (Burgers equation and quadratic entropy)

$$\begin{split} \partial_t w &+ \partial_x w^2 / 2 = -\varepsilon \partial_x^4 w \\ \partial_t w^2 / 2 &+ \partial_x w^3 / 3 = -\varepsilon w \partial_x^4 w \\ &= -\varepsilon \partial_x (w \partial_x^3 w) + \varepsilon \partial_x (\partial_x w \partial_x^2 w) - \varepsilon (\partial_x^2 w)^2 \end{split}$$

so that we get

$$\frac{d}{dt}\int_{\mathbb{R}}\frac{1}{2}w^{2}(x,t)dx\leqslant 0$$

Global entropy stability for unlimited high-order schemes for hyperbolic systems 8 / 27

A simple proof of global entropy inequality in the case of the linear transport equation Consider the scalar linear transport equation of velocity $a \neq 0$

$$\partial_t w + a \partial_x w = 0$$

 $w(x, 0) = w_0(x)$

We consider the quadratic entropy $\eta(w) = \frac{w^2}{2}$, our result then simply states the quadratic stability. The scheme can be written in the form:

$$\frac{w_i^{n+1} - w_i^n}{\Delta t} = -\frac{a}{2\Delta x}(w_{i+1}^n - w_{i-1}^n) + \frac{\lambda}{4\Delta x}\Delta_i^n - \frac{\lambda}{4\Delta x}(\Theta_{i+1}^n\Delta_{i+1}^n + (1 - \Theta_{i-1})\Delta_{i-1}^n)$$

where $\lambda > 0$ and $\Delta_i^n = w_{i+1}^n - 2w_i^n + w_{i-1}^n$

Multiply the scheme by w_i^n and sum over $i \in \mathbb{Z}$. It yields

$$\sum_{i\in\mathbb{Z}} \frac{w_i^{n+1} - w_i^n}{\Delta t} \cdot w_i^n = \sum_{i\in\mathbb{Z}} -\frac{a}{2\Delta x} (w_{i+1}^n - w_{i-1}^n) \cdot w_i^n$$

$$+ \sum_{i\in\mathbb{Z}} \frac{\lambda}{4\Delta x} \Delta_i^n \cdot w_i^n$$

$$D_2$$

$$+ \sum_{i\in\mathbb{Z}} -\frac{\lambda}{4\Delta x} (\Theta_{i+1}\Delta_{i+1}^n + (1 - \Theta_{i-1})\Delta_{i-1}^n) \cdot w_i^n.$$

Using translations of indices, one rearranges the terms D_1 , D_2 and D_3 .

We get

$$\begin{split} D_1 &= 0, \\ D_2 + D_3 &= -\sum_{i \in \mathbb{Z}} \frac{\lambda}{8\Delta x} |\Delta_i^n|^2 + \sum_{i \in \mathbb{Z}} \frac{\lambda}{4\Delta x} \Theta_i \Delta_i^n (w_{i+1}^n - w_{i-1}^n). \end{split}$$

Comments:

- Choose Θ_i (bounded as $\Delta x \to 0$) and such that $\sum_{i \in \mathbb{Z}} \frac{\lambda}{4\Delta x} \Theta_i \Delta_i^n (w_{i+1}^n w_{i-1}^n) \leqslant 0$. For example $\Theta_i = -\text{sgn}(\Delta_i^n (w_{i+1}^n w_{i-1}^n))$.
- A consistency analysis shows that for a smooth function w(x)

$$\begin{aligned} |\Delta_i^n|^2 &\approx \Delta x^4 \partial_{xx} w(x_i)^2 \\ \Delta_i^n(w_{i+1}^n - w_{i-1}^n) &\approx \Delta x^3 \partial_{xx} w(x_i) \partial_x w(x_i) \end{aligned}$$

We reformulate D_0

$$\Delta t D_0 = \frac{1}{2} \sum_{i \in \mathbb{Z}} (|w_i^{n+1}|^2 - |w_i^n|^2) - \frac{1}{2} \sum_{i \in \mathbb{Z}} |w_i^{n+1} - w_i^n|^2.$$

to write

$$\begin{split} \frac{1}{2} \sum_{i \in \mathbb{Z}} |w_i^{n+1}|^2 \Delta x &- \frac{1}{2} \sum_{i \in \mathbb{Z}} |w_i^n|^2 \Delta x \\ &= \frac{\Delta x}{2\Delta t} \sum_{i \in \mathbb{Z}} |w_i^{n+1} - w_i^n|^2 - \sum_{i \in \mathbb{Z}} \frac{\lambda}{8} |\Delta_i|^2 + \sum_{i \in \mathbb{Z}} \frac{\lambda}{4} \Theta_i \Delta_i^n (w_{i+1}^n - w_{i-1}^n) \\ &= \frac{\Delta t}{2\Delta x} \sum_{i \in \mathbb{Z}} |F_{i+\frac{1}{2}}^{O2} - F_{i-\frac{1}{2}}^{O2}|^2 - \sum_{i \in \mathbb{Z}} \frac{\lambda}{8} |\Delta_i^n|^2 + \sum_{i \in \mathbb{Z}} \frac{\lambda}{4} \Theta_i \Delta_i^n (w_{i+1}^n - w_{i-1}^n) \end{split}$$

Make appropriate regularity and summability assumption, typically $(w_i)_{i\in\mathbb{Z}} \in h^2(\mathbb{Z})$ and non zero. Consider

$$0 < \frac{\Delta t}{\Delta x} \leqslant \frac{\sum_{i \in \mathbb{Z}} \frac{\lambda}{8} |\Delta_i^n|^2 - \sum_{i \in \mathbb{Z}} \frac{\lambda}{4} \Theta_i \Delta_i^n (w_{i+1}^n - w_{i-1}^n)}{\sum_{i \in \mathbb{Z}} |\mathcal{F}_{i+\frac{1}{2}}^{O2} - \mathcal{F}_{i-\frac{1}{2}}^{O2}|^2}$$

so that the right hand side is positive, then one gets the quadratic stability.

Global entropy stability for unlimited high-order schemes for hyperbolic systems 12 / 27

Comments:

• The previous consistency analysis shows that the CFL is of parabolic type

$$\frac{\sum_{i\in\mathbb{Z}}\frac{\lambda}{8}|\Delta_i^n|^2 - \sum_{i\in\mathbb{Z}}\frac{\lambda}{4}\Theta_i\Delta_i^n(w_{i+1}^n - w_{i-1}^n)}{\sum_{i\in\mathbb{Z}}|\mathcal{F}_{i+\frac{1}{2}}^{O2} - \mathcal{F}_{i-\frac{1}{2}}^{O2}|^2} = \mathcal{O}(\Delta x)$$

- The CFL is global and probably far from being optimal
- The proof generalizes to any strictly convex entropy η but the proof is more technical because the sum $\sum_{i \in \mathbb{Z}} a(w_{i+1} w_{i-1}) \cdot \eta'(w_i)$ is not exactly zero (it is zero up to high order terms)

Numerical results

In the following experiment, we used a second-order in time discretization and fix the hyperbolic CFL condition $\frac{\lambda \Delta t}{\Delta x} \leqslant \frac{1}{2}$.

 $\Omega = \mathbb{R}, f(w) = w^2/2, \eta(w) = w^2/2.$ We test four choices for the sequence $(\Theta_i)_{i \in \mathbb{Z}}$.

$$\begin{split} \Theta_{a,i}^{m} &= -\theta_{a} \operatorname{sign} \left((\delta_{i+\frac{1}{2}}^{m})^{2} - (\delta_{i-\frac{1}{2}}^{m})^{2} \right), \\ \Theta_{b,i}^{m} &= -\theta_{b} \operatorname{tanh} \left((\delta_{i+\frac{1}{2}}^{m})^{2} - (\delta_{i-\frac{1}{2}}^{m})^{2} \right), \\ \Theta_{c,i}^{m} &= \frac{\left((\delta_{i-\frac{1}{2}}^{m})^{2} - (\delta_{i+\frac{1}{2}}^{m})^{2} \right) \left((\delta_{i-\frac{1}{2}}^{m})^{2} + (\delta_{i+\frac{1}{2}}^{m})^{2} \right)}{\left((\delta_{i-\frac{1}{2}}^{m})^{2} + (\delta_{i+\frac{1}{2}}^{m})^{2} \right)^{2} + \varepsilon}, \end{split}$$
(1)
$$\Theta_{d,i}^{m} &= \frac{1}{2}, \end{split}$$

Burgers equation: smooth solution

We take a smooth initial data $w_0(x) = 0.25 + 0.5 \sin(\pi x)$ over a periodic domain [-1, 1). With a final time small enough, here given by t = 0.3, the exact solution remains smooth so that the order of accuracy can be evaluated. For a smooth periodic smooth solution, we measure the error in L^1, L^2, L^∞ . We obtain second order of accuracy. Plots corresponds to 400 cells.

Global entropy stability for unlimited high-order schemes for hyperbolic systems

Burgers equation: smooth solution

	Second-order scheme errors $\Theta_i^m = \Theta_{a,i}^m$							
cells	L ¹	order	L ²	order	L∞	order		
100	5.7E-04	-	6.8E-04	-	1.8E-03	-		
200	1.4E-04	2.0	1.7E-04	2.0	4.5E-04	2.0		
400	3.5E-05	2.0	4.1E-05	2.0	1.1E-04	2.0		
800	8.8E-06	2.0	1.0E-05	2.0	2.8E-05	2.0		
1600	2.2E-06	2.0	2.6E-06	2.0	6.9E-06	2.0		
	Second-order scheme errors $\Theta_i^m = \Theta_{b,i}^m$							
cells	L ¹	order	L ²	order	L [∞]	order		
100	5.7E-04	-	6.8E-04	-	1.8E-03	-		
200	1.4E-04	2.0	1.7E-04	2.0	4.5E-04	2.0		
400	3.5E-05	2.0	4.1E-05	2.0	1.1E-04	2.0		
800	8.8E-06	2.0	1.0E-05	2.0	2.8E-05	2.0		
1600	2.2E-06	2.0	2.6E-06	2.0	6.9E-06	2.0		
	Second-order scheme errors $\Theta_{i}^{m} = \Theta_{C,i}^{m}$							
cells	L ¹	order	L ²	order	L∞	order		
100	1.4E-03	-	1.6E-03	-	4.1E-03	-		
200	2.4E-04	2.5	2.8E-04	2.6	7.6E-04	2.4		
400	3.9E-05	2.7	4.3E-05	2.7	1.1E-04	2.8		
800	8.7E-06	2.1	1.0E-05	2.1	2.7E-05	2.0		
1600	2.2E-06	2.0	2.6E-06	2.0	6.8E-06	2.0		
	Second-order scheme errors $\Theta_i^m = \Theta_{d,i}^m$							
cells	L ¹	order	L ²	order	L∞	order		
100	4.4E-04	-	4.8E-04	-	1.1E-03	-		
200	1.1E-04	2.0	1.1E-04	2.1	2.7E-04	2.1		
400		1		0.0		2.0		
400	2.6E-05	2.0	2.8E-05	2.0	0.0E-05	2.0		
800	2.6E-05 6.5E-06	2.0 2.0	2.8E-05 6.8E-06	2.0	1.6E-05	2.0		

Global entropy stability for unlimited high-order schemes for hyperbolic systems

Burgers equation: discontinuous solution

We take a discontinuous initial data over the periodic domain [-1,1) defined by $w_0(x) = \begin{cases} 1 & \text{if } -0.25 \leqslant x \leqslant 0.25, \\ 0 & \text{otherwise.} \end{cases}$

Burgers equation: discontinuous solution

	Second-order scheme errors $\Theta_i^m = \Theta_{a,i}^m$							
cells	L ¹	order	L ²	order	L∞	order		
100	3.4E-02	-	6.4E-02	-	3.3E-01	-		
200	1.7E-02	1.0	4.3E-02	0.6	3.3E-01	0.0		
400	8.5E-03	1.0	3.0E-02	0.5	3.2E-01	0.0		
800	4.3E-03	1.0	2.1E-02	0.5	3.2E-01	0.0		
1600	2.1E-03	1.0	1.5E-02	0.5	3.2E-01	0.0		
	Second-order scheme errors $\Theta_i^m = \Theta_{b,i}^m$							
cells	L ¹	order	L ²	order	L [∞]	order		
100	5.4E-02	-	9.0E-02	-	3.8E-01	-		
200	2.7E-02	1.0	5.9E-02	0.6	3.8E-01	0.0		
400	1.4E-02	1.0	4.0E-02	0.6	3.8E-01	0.0		
800	7.0E-03	1.0	2.7E-02	0.6	3.8E-01	0.0		
1600	3.5E-03	1.0	1.8E-02	0.5	3.8E-01	0.0		
	Second-order scheme errors $\Theta_{i}^{m} = \Theta_{C,F,i}^{m}$							
cells	L ¹	order	L ²	order	L∞	order		
100	3.5E-02	-	7.1E-02	-	3.6E-01	-		
200	1.8E-02	0.9	4.9E-02	0.5	3.6E-01	0.0		
400	9.2E-03	1.0	3.4E-02	0.5	3.6E-01	0.0		
800	4.6E-03	1.0	2.3E-02	0.5	3.6E-01	0.0		
1600	2.3E-03	1.0	1.6E-02	0.5	3.6E-01	0.0		
	Second-order scheme errors $\Theta_i^m = \Theta_{d,i}^m$							
		Second-	order scheme	errors Θ_i^m	$= \Theta_{d,i}^{m}$			
cells	L ¹	Second-	order scheme	errors Θ_i^m order	$= \Theta_{d,i}^m$ L^∞	order		
cells 100	L ¹ 3.1E-02	Second- order -	L ² 5.8E-02	errors Θ_i^m order -	$= \Theta_{d,i}^{m}$ L^{∞} 2.8E-01	order -		
cells 100 200	L ¹ 3.1E-02 1.4E-02	Second- order - 1.1	L ² 5.8E-02 4.0E-02	errors Θ_i^m order - 0.6	$= \Theta_{d,i}^{m}$ L^{∞} $2.8E-01$ $2.8E-01$	order - 0.0		
cells 100 200 400	L ¹ 3.1E-02 1.4E-02 7.1E-03	Second- order - 1.1 1.0	L ² 5.8E-02 4.0E-02 2.8E-02	errors Θ_i^m order - 0.6 0.5	$= \Theta_{d,i}^{m}$ L^{∞} 2.8E-01 2.8E-01 2.8E-01	order - 0.0 0.0		
cells 100 200 400 800	L ¹ 3.1E-02 1.4E-02 7.1E-03 3.5E-03	Second- order - 1.1 1.0 1.0	L ² 5.8E-02 4.0E-02 2.8E-02 1.9E-02	errors Θ_i^m order - 0.6 0.5 0.5	$= \Theta_{d,i}^{m}$ L^{∞} 2.8E-01 2.8E-01 2.8E-01 2.8E-01 2.8E-01	order - 0.0 0.0 0.0		

Global entropy stability for unlimited high-order schemes for hyperbolic systems

Euler equations

We consider the Euler system where $\Omega = \{(\rho, \rho u, \rho E) \in \mathbb{R}^3 : \rho > 0, \rho E - \rho u^2/2 > 0\}$ where the unknown vector is $w = (\rho, \rho u, \rho E)^T$ and the flux function is $f(w) = (\rho u, \rho u^2 + \rho, \rho E u + \rho u)^T$, with $p = (\gamma - 1)(\rho E - \frac{\rho u^2}{2})$. We fix $\gamma = 1.4$ and we consider the entropy $\eta(w) = -\rho \ln \left(\frac{\rho}{\rho^{\gamma}}\right)$. For the Euler problem, we use the following matrix parameter

$$\Theta_{a,i}^{n} = -\theta_{a} \operatorname{diag}_{1 \leq j \leq 3} \left(\operatorname{sign} \left(\left(\nabla \eta(w_{i+1}^{n}) - \nabla \eta(w_{i-1}^{n}) \right)_{j} \left(\delta_{i+\frac{1}{2}}^{m} - \delta_{i-\frac{1}{2}}^{m} \right)_{j} \right) \right),$$

$$\Theta_{b,i}^n = -\theta_b \operatorname{diag}_{1 \leq j \leq 3} \left(\tanh\left(\left(\nabla \eta(w_{i+1}^n) - \nabla \eta(w_{i-1}^n) \right)_j (\delta_{i+\frac{1}{2}}^m - \delta_{i-\frac{1}{2}}^m)_j \right) \right),$$

$$\Theta_{c,\varepsilon,i}^{m} = \operatorname{diag}_{1\leqslant j\leqslant 3}\left(\frac{\left(\left(\delta_{i-\frac{1}{2}}^{m}\right)_{j}^{2}-\left(\delta_{i+\frac{1}{2}}^{m}\right)_{j}^{2}\right)\left(\left(\delta_{i-\frac{1}{2}}^{m}\right)_{j}^{2}+\left(\delta_{i+\frac{1}{2}}^{m}\right)_{j}^{2}\right)}{\left(\left(\left(\delta_{i-\frac{1}{2}}^{m}\right)_{j}^{2}+\left(\delta_{i+\frac{1}{2}}^{m}\right)_{j}^{2}\right)^{2}+\varepsilon}\right),$$
(2)

We take a smooth initial data $\rho_0(x) = 1 + 0.5 \sin^2(\pi x)$, $u_0(x) = 0.5$, $p_0(x) = 1$ over a periodic domain [-1, 1). Fro all t > 0 the exact solution remains smooth so that the order of accuracy can be evaluated. We measure the error in L^1, L^2, L^{∞} . We obtain second order of accuracy. Plots corresponds to 400 cells.

	Second-order scheme errors $\Theta^m = \Theta^m$							
L								
cells	L ¹	order	L ²	order	L∞	order		
100	3.5E-03	-	1.9E-03	-	1.7E-03	-		
200	8.7E-04	2.0	4.7E-04	2.0	4.2E-04	2.0		
400	2.2E-04	2.0	1.2E-04	2.0	1.0E-04	2.0		
800	5.4E-05	2.0	2.9E-05	2.0	2.6E-05	2.0		
1600	1.4E-05	2.0	7.4E-06	2.0	6.5E-06	2.0		
	Second-order scheme errors $\Theta_i^m = \Theta_{b,i}^m$							
cells	L ¹	order	L ²	order	L∞	order		
100	3.5E-03	-	1.9E-03	-	1.7E-03	-		
200	8.7E-04	2.0	4.7E-04	2.0	4.2E-04	2.0		
400	2.2E-04	2.0	1.2E-04	2.0	1.0E-04	2.0		
800	5.4E-05	2.0	2.9E-05	2.0	2.6E-05	2.0		
1600	1.4E-05	2.0	7.4E-06	2.0	6.5E-06	2.0		
	Second-order scheme errors $\Theta_{i}^{m} = \Theta_{c,\varepsilon,i}^{m}$							
cells	L ¹	order	L ²	order	L∞	order		
100	1.2E-02	-	7.6E-03	-	1.1E-02	-		
200	2.4E-03	2.3	1.6E-03	2.2	2.9E-03	1.9		
400	3.4E-04	2.8	2.0E-04	3.0	3.7E-04	3.0		
800	6.0E-05	2.5	3.1E-05	2.7	2.6E-05	3.8		
1600	1.4E-05	2.1	7.4E-06	2.1	6.5E-06	2.0		

We consider the initial data given by

$$\rho_0(x) = \begin{cases} 1 & \text{if } x < 0.5, \\ 0.125 & \text{otherwise}, \end{cases} \qquad u_0(x) = 0, \qquad p_0(x) = \begin{cases} 1 & \text{if } x < 0.5, \\ 0.1 & \text{otherwise}, \end{cases}$$

over the domain [0,1]. The final time is 0.2. To respect the periodic conditions on the boundaries, we work on the domain [-1,1] and we symmetrize the shock tube problem on [-1,0].

Euler equations: Shock tube solution

Euler equations: Shock tube solution

	Second-order scheme errors $\Theta_i^m = \Theta_{a,i}^m$							
cells	L ¹	order	L ²	order	L∞	order		
100	7.2E-02	-	7.1E-02	-	2.7E-01	-		
200	4.0E-02	0.8	4.5E-02	0.7	2.4E-01	0.1		
400	2.2E-02	0.9	2.9E-02	0.6	2.4E-01	0.0		
800	1.2E-02	0.9	1.9E-02	0.6	1.9E-01	0.4		
1600	6.4E-03	0.9	1.3E-02	0.6	1.7E-01	0.1		
	Second-order scheme errors $\Theta_i^m = \Theta_{b,i}^m$							
cells	L ¹	order	L ²	order	L∞	order		
100	5.9E-02	-	6.2E-02	-	1.9E-01	-		
200	3.3E-02	0.8	3.9E-02	0.7	1.9E-01	0.0		
400	1.8E-02	0.9	2.5E-02	0.6	1.9E-01	0.0		
800	9.4E-03	0.9	1.5E-02	0.7	1.3E-01	0.6		
1600	5.2E-03	0.9	1.1E-02	0.5	1.6E-01	0.4		
	Second-order scheme errors $\Theta_i^m = \Theta_{c,\varepsilon,i}^m$							
cells	L ¹	order	L ²	order	Loo	order		
100	6.0E-02	-	6.3E-02	-	2.5E-01	-		
200	3.2E-02	0.9	4.0E-02	0.7	2.3E-01	0.1		
400	1.7E-02	0.9	2.6E-02	0.6	2.4E-01	0.0		
800	8.7E-03	1.0	1.6E-02	0.7	1.7E-01	0.5		
1600	4.5E-03	0.9	1.1E-02	0.5	2.2E-01	0.4		

25 / 27

- Isentropic vertex
- $[0, 10]^2, t = 0.1.$
- Unstructered meshes from 400 to $10^5\ \text{cells}$

• Entropy given by
$$\eta(w) = -\rho \ln{(p/\rho^{\gamma})}$$

h	L^1	order	L ²	order	L^{∞}	order
6.2E-01	1.3E-01	-	2.8E-02	-	1.5E-02	-
3.4E-01	3.4E-02	2.2	8.1E-03	2.0	7.9E-03	1.1
1.7E-01	1.0E-02	1.8	2.6E-03	1.7	3.6E-03	1.2
8.9E-02	2.8E-03	2.0	6.7E-04	2.1	7.6E-04	2.4
4.5E-02	7.8E-04	1.9	2.0E-04	1.8	2.9E-04	1.4

Euler equations: 2D extension

- Shock reflexion
- Unstructered meshes $\approx 115\,000$ cells
- Entropy given by $\eta(w) = -\rho \ln{(p/\rho^{\gamma})}$

Thank you for your attention