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Context



Hyperbolic systems of conservation laws

For the unknown wpx , tq P Ω Ă Rd , we consider the Cauchy problem

Btw ` Bx f pwq “ 0, px , tq P Rˆ p0,`8q
wpx , t “ 0q “ w0pxq

With the Jacobian ∇f puq diagonalizable in R so that the system is hyperbolic

- For genuine non linear equations, the solutions w may develop discontinuities

- Dicontinuities may implay lost of uniqueness

- To recover uniqueness ÝÑ Introduction of local entropy inequalities

Btηpwq ` BxQpwq ď 0 in D1pp0,`8q ˆ Rq

for any pair entropy-entropy flux η P C1pΩ;Rq convex and Q P C1pΩ;Rq defined
by

∇ηpwqT∇f pwq “ ∇QpwqT

- Weak entropy principle (global)
ż

R
ηpwpx , tqqdx ď

ż

R
ηpwpx , sqqdx t ą s ě 0
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Finite-volume schemes and space-consistency

Mesh definition: ∆x ,∆t ą 0, Ci :“ pxi´ 1
2
, xi` 1

2
q, xi˘ 1

2
“ i∆x ˘ ∆x

2 , tn “ n∆t

Numerical approximation

@n P Z, i P Z,
wn`1
i ´ wn

i
∆t

`

F n
i` 1

2
´ F n

i´ 1
2

∆x
“ 0

where wn
i «

1
∆x

ş

Ci wpt
n, xqdx .

Definition (Formal consistency)
Let r P N˚ and F : Ω2r`2 Ñ R a continuous function such that F pw , ...,wq “ f pwq.
A finite volume scheme with a numerical flux F n

i` 1
2
“ F pwn

i´r , ...,wn
i`r`1qq is

formally second-order consistent in space if for a smooth compactly supported
function wpxq and for all i P Z,

Fi` 1
2
“ f pwpxi` 1

2
qq `Op∆x2q, wi “

1
∆x

ż

Ci
wpxqdx ,

where the function Op∆x2q is independent on i P Z.

• The centered flux F n
i` 1

2
“

f pwn
i q`f pwn

i`1q
2 is second-order (but not stable)

• The HLL flux F n
i` 1

2
“

f pwn
i q`f pwn

i`1q
2 ´ λ

2 pw
n
i`1 ´ wn

i q is first-order.
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The litterature

Challenge: design a true high-order in space numerical methods that verifies a
discrete entropy inequality (local or global)

- An entropy preserving 3-point scheme is at most first-order accurate

- MUSCL strategy: lost of order

- Entropy variable strategy (Tadmor): semi-discrete entropy inequality

- Nonlinear projection strategy (LefLoch, Coquel)

- Global entropy estimations (Mishra, Parés)

- Artificial viscosity (Abgrall, Tadmor)

- Implicit schemes (Dumbser)

- Multi-cells entropy inequalities (Ricchiuto)
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Second-order in space dissipative
schemes



A second-order in space finite-volume scheme

High-order HLL scheme

FO2
i` 1

2
:“

f pwn
i q ` f pwn

i`1q

2
´
λ

2
pwn

i`1 ´ wn
i q `

pαO2
i ` αO2

i`1q

2
pαi qiPZ ensures the formal second-order consistency of the flux
For a smooth function wpxq, set

wi :“ 1
∆x

ż

Ci
wpxqdx

Taylor expansion around xi` 1
2
yields

FO2
i` 1

2
“ f pwpxi` 1

2
qq ´

λ∆x
2
Bxwpxi` 1

2
q `Op∆x2q `

pαO2
i ` αO2

i`1q

2
.

The formal second-order consistency in space is ensured provided:

αO2
i “

λ∆x
2
Bxwpxi` 1

2
q `Op∆x2q.

The approximation formulas of the spatial derivative of Bxwpxi` 1
2
q are degrees of

freedom.
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Definition of the corrective terms

Key idea: Choose pαi qiPZ in such a way that:

- The formal second order consistency statement holds:

αO2
i “

λ∆x
2
Bxwpxi` 1

2
q `Op∆x2q.

- The following dissipativity inequality relatively to a given entropy η is verified for
non trivial state pwn

i qiPZ:
ÿ

iPZ

ˆ

FO2
i` 1

2
´ FO2

i´ 1
2

˙

¨∇ηpwn
i q ą 0.

A possibility (among many others) is to set:

αO2
i :“

λ∆xBxwO2
i

2
∆xBxwO2

i :“ Θiδi` 1
2
` p1´Θi qδi´ 1

2
, δi` 1

2
“ wn

i`1 ´ wn
i

where pΘi qiPZ is a sequence of diagonal matrices bounded as ∆x Ñ 0 chosen such
that the entropy dissipation inequality holds
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Main result

Theorem

Consider η P C2pΩ,Rq a strictly convex entropy. Let the approximation at time tn,
pwn

i qiPZ being a non zero sequence in h2pZq and such that
ř

iPZ ηpwn
i q∆x is finite.

We assume the following:

a) There exists a compact set K Ă Ω such that wn
i P K for every i P Z.

b) The sequence of bounded (as ∆x Ñ 0) diagonal matrices pΘi qiPZ satisfies for all
i P Z the entropy dissipative inequality

ÿ

iPZ

ˆ

FO2
i` 1

2
´ FO2

i´ 1
2

˙

¨∇ηpwn
i q ă 0

Then there exists two constants λn ą 0 and Cn ą 0 with Cn “
∆xÑ0

Op1q such that

for any λ ą λn and 0 ă ∆t
∆x2 ď Cn the second-order scheme

wn`1
i ´ wn

i
∆t

`

FO2
i` 1

2
´ FO2

i´ 1
2

∆x
“ 0.

satifies
wn`1
i P Ω and

ÿ

iPZ
ηpwn`1

i q∆x ď
ÿ

iPZ
ηpwn

i q∆x
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Main result

Comments:

• The assumption a) is technical. It can be completely removed in the case where
Ω “ Rd

• The assumption b) is the dissipative inequality relatively to an entropy η
Lot of choices of matrices pΘi qiPZ can be exhibited. Form scalar equation with
ηpwq “ w2{2

Θm
i “ ´θa sign

ˆ

pδm
i` 1

2
q2 ´ pδm

i´ 1
2
q2
˙

,

Θm
i “

ˆ

pδm
i´ 1

2
q2 ´ pδm

i` 1
2
q2
˙ˆ

pδm
i´ 1

2
q2 ` pδm

i` 1
2
q2
˙

ˆ

pδm
i´ 1

2
q2 ` pδm

i` 1
2
q2
˙2
` ε

• The strict convexity of the entropy is needed in the proof because one needs to
get a positive lower bound for the Hessian ∇2η.

• One can recover a hyperbolic CFL condition using a second-order in time
discretization.
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Main result

• Global entropy and first-order viscosity (Burgers equation and quadratic entropy)

Btw ` Bxw2{2 “ εB2xw

Btw2{2` Bxw3{3 “ εwB2xw

“ εBx pwBxwq ´ εpBxwq2

so that we get
d
dt

ż

R

1
2
w2px , tqdx ď 0

• Global entropy and second-order viscosity (Burgers equation and quadratic
entropy)

Btw ` Bxw2{2 “ ´εB4xw
Btw2{2` Bxw3{3 “ ´εwB4xw

“ ´εBx pwB3xwq ` εBx pBxwB2xwq ´ εpB2xwq2

so that we get
d
dt

ż

R

1
2
w2px , tqdx ď 0
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A simple proof of global entropy
inequality in the case of the
linear transport equation



The scalar linear transport equation

Consider the scalar linear transport equation of velocity a ‰ 0

Btw ` aBxw “ 0
wpx , 0q “ w0pxq

We consider the quadratic entropy ηpwq “ w2
2 , our result then simply states the

quadratic stability. The scheme can be written in the form:

wn`1
i ´ wn

i
∆t

“ ´
a

2∆x
pwn

i`1 ´ wn
i´1q `

λ

4∆x
∆n

i ´
λ

4∆x
pΘn

i`1∆n
i`1 ` p1´Θi´1q∆n

i´1q

where λ ą 0 and ∆n
i “ wn

i`1 ´ 2wn
i ` wn

i´1
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The scalar linear transport equation

Multiply the scheme by wn
i and sum over i P Z. It yields

ÿ

iPZ

wn`1
i ´ wn

i
∆t

¨ wn
i

loooooooooooomoooooooooooon

D0

“
ÿ

iPZ
´

a
2∆x

pwn
i`1 ´ wn

i´1q ¨ wn
i

looooooooooooooooooomooooooooooooooooooon

D1

`
ÿ

iPZ

λ

4∆x
∆n

i ¨ wn
i

looooooooomooooooooon

D2

`
ÿ

iPZ
´

λ

4∆x
pΘi`1∆n

i`1 ` p1´Θi´1q∆n
i´1q ¨ wn

i
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

D3

.

Using translations of indices, one rearranges the terms D1, D2 and D3.
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The scalar linear transport equation

We get

D1 “ 0,

D2 ` D3 “ ´
ÿ

iPZ

λ

8∆x
|∆n

i |
2 `

ÿ

iPZ

λ

4∆x
Θi∆n

i pwn
i`1 ´ wn

i´1q.

Comments:

• Choose Θi (bounded as ∆x Ñ 0) and such that
ř

iPZ
λ

4∆x Θi∆n
i pwn

i`1 ´ wn
i´1q ď 0. For example Θi “ ´sgnp∆n

i pwn
i`1 ´ wn

i´1qq.

• A consistency analysis shows that for a smooth function wpxq

|∆n
i |
2 « ∆x4Bxxwpxi q2

∆n
i pwn

i`1 ´ wn
i´1q « ∆x3Bxxwpxi qBxwpxi q
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The scalar linear transport equation

We reformulate D0

∆tD0 “
1
2
ÿ

iPZ
p|wn`1

i |2 ´ |wn
i |

2q ´
1
2
ÿ

iPZ
|wn`1

i ´ wn
i |

2.

to write
1
2
ÿ

iPZ
|wn`1

i |2∆x ´
1
2
ÿ

iPZ
|wn

i |
2∆x

“
∆x
2∆t

ÿ

iPZ
|wn`1

i ´ wn
i |

2 ´
ÿ

iPZ

λ

8
|∆i |

2 `
ÿ

iPZ

λ

4
Θi∆n

i pwn
i`1 ´ wn

i´1q

“
∆t
2∆x

ÿ

iPZ
|FO2

i` 1
2
´ FO2

i´ 1
2
|2 ´

ÿ

iPZ

λ

8
|∆n

i |
2 `

ÿ

iPZ

λ

4
Θi∆n

i pwn
i`1 ´ wn

i´1q

Make appropriate regularity and summability assumption, typically pwi qiPZ P h2pZq
and non zero. Consider

0 ă ∆t
∆x

ď

ř

iPZ
λ
8 |∆

n
i |
2 ´

ř

iPZ
λ
4 Θi∆n

i pwn
i`1 ´ wn

i´1q
ř

iPZ |FO2
i` 1

2
´ FO2

i´ 1
2
|2

so that the right hand side is positive, then one gets the quadratic stability.
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The scalar linear transport equation

Comments:

• The previous consistency analysis shows that the CFL is of parabolic type
ř

iPZ
λ
8 |∆

n
i |
2 ´

ř

iPZ
λ
4 Θi∆n

i pwn
i`1 ´ wn

i´1q
ř

iPZ |FO2
i` 1

2
´ FO2

i´ 1
2
|2

“ Op∆xq

• The CFL is global and probably far from being optimal

• The proof generalizes to any strictly convex entropy η but the proof is more
technical because the sum

ř

iPZ apwi`1 ´ wi´1q ¨ η1pwi q is not exactly zero ( it is
zero up to high order terms)
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Numerical results



Burgers equation

In the following experiment, we used a second-order in time discretization and fix the
hyperbolic CFL condition λ∆t

∆x ď
1
2 .

Ω “ R, f pwq “ w2{2, ηpwq “ w2{2. We test four choices for the sequence pΘi qiPZ.

Θm
a,i “ ´θa sign

ˆ

pδm
i` 1

2
q2 ´ pδm

i´ 1
2
q2
˙

,

Θm
b,i “ ´ θb tanh

ˆ

pδm
i` 1

2
q2 ´ pδm

i´ 1
2
q2
˙

,

Θm
c,i “

ˆ

pδm
i´ 1

2
q2 ´ pδm

i` 1
2
q2
˙ˆ

pδm
i´ 1

2
q2 ` pδm

i` 1
2
q2
˙

ˆ

pδm
i´ 1

2
q2 ` pδm

i` 1
2
q2
˙2
` ε

,

Θm
d,i “

1
2
,

(1)
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Burgers equation: smooth solution

We take a smooth initial data w0pxq “ 0.25` 0.5 sinpπxq over a periodic domain
r´1, 1q. With a final time small enough, here given by t “ 0.3, the exact solution
remains smooth so that the order of accuracy can be evaluated. For a smooth periodic
smooth solution, we measure the error in L1, L2, L8. We obtain second order of
accuracy. Plots corresponds to 400 cells.
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Burgers equation: smooth solution

Second-order scheme errors Θm
i “ Θm

a,i
cells L1 order L2 order L8 order
100 5.7E-04 - 6.8E-04 - 1.8E-03 -
200 1.4E-04 2.0 1.7E-04 2.0 4.5E-04 2.0
400 3.5E-05 2.0 4.1E-05 2.0 1.1E-04 2.0
800 8.8E-06 2.0 1.0E-05 2.0 2.8E-05 2.0
1600 2.2E-06 2.0 2.6E-06 2.0 6.9E-06 2.0

Second-order scheme errors Θm
i “ Θm

b,i
cells L1 order L2 order L8 order
100 5.7E-04 - 6.8E-04 - 1.8E-03 -
200 1.4E-04 2.0 1.7E-04 2.0 4.5E-04 2.0
400 3.5E-05 2.0 4.1E-05 2.0 1.1E-04 2.0
800 8.8E-06 2.0 1.0E-05 2.0 2.8E-05 2.0
1600 2.2E-06 2.0 2.6E-06 2.0 6.9E-06 2.0

Second-order scheme errors Θm
i “ Θm

c,i
cells L1 order L2 order L8 order
100 1.4E-03 - 1.6E-03 - 4.1E-03 -
200 2.4E-04 2.5 2.8E-04 2.6 7.6E-04 2.4
400 3.9E-05 2.7 4.3E-05 2.7 1.1E-04 2.8
800 8.7E-06 2.1 1.0E-05 2.1 2.7E-05 2.0
1600 2.2E-06 2.0 2.6E-06 2.0 6.8E-06 2.0

Second-order scheme errors Θm
i “ Θm

d,i
cells L1 order L2 order L8 order
100 4.4E-04 - 4.8E-04 - 1.1E-03 -
200 1.1E-04 2.0 1.1E-04 2.1 2.7E-04 2.1
400 2.6E-05 2.0 2.8E-05 2.0 6.6E-05 2.0
800 6.5E-06 2.0 6.8E-06 2.0 1.6E-05 2.0
1600 1.6E-06 2.0 1.7E-06 2.0 4.0E-06 2.0
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Burgers equation: discontinuous solution

We take a discontinuous initial data over the periodic domain r´1, 1q defined by

w0pxq “
#

1 if ´ 0.25 ď x ď 0.25,
0 otherwise.
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Burgers equation: discontinuous solution

Second-order scheme errors Θm
i “ Θm

a,i
cells L1 order L2 order L8 order
100 3.4E-02 - 6.4E-02 - 3.3E-01 -
200 1.7E-02 1.0 4.3E-02 0.6 3.3E-01 0.0
400 8.5E-03 1.0 3.0E-02 0.5 3.2E-01 0.0
800 4.3E-03 1.0 2.1E-02 0.5 3.2E-01 0.0
1600 2.1E-03 1.0 1.5E-02 0.5 3.2E-01 0.0

Second-order scheme errors Θm
i “ Θm

b,i
cells L1 order L2 order L8 order
100 5.4E-02 - 9.0E-02 - 3.8E-01 -
200 2.7E-02 1.0 5.9E-02 0.6 3.8E-01 0.0
400 1.4E-02 1.0 4.0E-02 0.6 3.8E-01 0.0
800 7.0E-03 1.0 2.7E-02 0.6 3.8E-01 0.0
1600 3.5E-03 1.0 1.8E-02 0.5 3.8E-01 0.0

Second-order scheme errors Θm
i “ Θm

c,ε,i
cells L1 order L2 order L8 order
100 3.5E-02 - 7.1E-02 - 3.6E-01 -
200 1.8E-02 0.9 4.9E-02 0.5 3.6E-01 0.0
400 9.2E-03 1.0 3.4E-02 0.5 3.6E-01 0.0
800 4.6E-03 1.0 2.3E-02 0.5 3.6E-01 0.0
1600 2.3E-03 1.0 1.6E-02 0.5 3.6E-01 0.0

Second-order scheme errors Θm
i “ Θm

d,i
cells L1 order L2 order L8 order
100 3.1E-02 - 5.8E-02 - 2.8E-01 -
200 1.4E-02 1.1 4.0E-02 0.6 2.8E-01 0.0
400 7.1E-03 1.0 2.8E-02 0.5 2.8E-01 0.0
800 3.5E-03 1.0 1.9E-02 0.5 2.8E-01 0.0
1600 1.7E-03 1.0 1.4E-02 0.5 2.8E-01 0.0
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Euler equations

We consider the Euler system where Ω “ tpρ, ρu, ρEq P R3 : ρ ą 0, ρE ´ ρu2{2 ą 0u
where the unknown vector is w “ pρ, ρu, ρEqT and the flux function is
f pwq “ pρu, ρu2 ` p, ρEu ` puqT , with p “ pγ ´ 1qpρE ´ ρu2

2 q. We fix γ “ 1.4 and
we consider the entropy ηpwq “ ´ρ ln

´

p
ργ

¯

. For the Euler problem, we use the
following matrix parameter

Θn
a,i “ ´θa diag1ďjď3

ˆ

sign
ˆ

`

∇ηpwn
i`1q ´∇ηpwn

i´1q
˘

j pδ
m
i` 1

2
´ δmi´ 1

2
qj

˙˙

,

Θn
b,i “ ´ θb diag1ďjď3

ˆ

tanh
ˆ

`

∇ηpwn
i`1q ´∇ηpwn

i´1q
˘

j pδ
m
i` 1

2
´ δmi´ 1

2
qj

˙˙

,

Θm
c,ε,i “ diag1ďjď3

¨

˚

˚

˚

˚

˚

˝

˜

ˆ

δm
i´ 1

2

˙2

j
´

ˆ

δm
i` 1

2

˙2

j

¸˜

ˆ

δm
i´ 1

2

˙2

j
`

ˆ

δm
i` 1

2

˙2

j

¸

˜

ˆ

δm
i´ 1

2

˙2

j
`

ˆ

δm
i` 1

2

˙2

j

¸2

` ε

˛

‹

‹

‹

‹

‹

‚

,

(2)
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Euler equation: smooth solution

We take a smooth initial data ρ0pxq “ 1` 0.5 sin2pπxq, u0pxq “ 0.5, p0pxq “ 1 over a
periodic domain r´1, 1q. Fro all t ą 0 the exact solution remains smooth so that the
order of accuracy can be evaluated. We measure the error in L1, L2, L8. We obtain
second order of accuracy. Plots corresponds to 400 cells.
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Euler equation: smooth solution

Second-order scheme errors Θm
i “ Θm

a,i
cells L1 order L2 order L8 order
100 3.5E-03 - 1.9E-03 - 1.7E-03 -
200 8.7E-04 2.0 4.7E-04 2.0 4.2E-04 2.0
400 2.2E-04 2.0 1.2E-04 2.0 1.0E-04 2.0
800 5.4E-05 2.0 2.9E-05 2.0 2.6E-05 2.0
1600 1.4E-05 2.0 7.4E-06 2.0 6.5E-06 2.0

Second-order scheme errors Θm
i “ Θm

b,i
cells L1 order L2 order L8 order
100 3.5E-03 - 1.9E-03 - 1.7E-03 -
200 8.7E-04 2.0 4.7E-04 2.0 4.2E-04 2.0
400 2.2E-04 2.0 1.2E-04 2.0 1.0E-04 2.0
800 5.4E-05 2.0 2.9E-05 2.0 2.6E-05 2.0
1600 1.4E-05 2.0 7.4E-06 2.0 6.5E-06 2.0

Second-order scheme errors Θm
i “ Θm

c,ε,i
cells L1 order L2 order L8 order
100 1.2E-02 - 7.6E-03 - 1.1E-02 -
200 2.4E-03 2.3 1.6E-03 2.2 2.9E-03 1.9
400 3.4E-04 2.8 2.0E-04 3.0 3.7E-04 3.0
800 6.0E-05 2.5 3.1E-05 2.7 2.6E-05 3.8
1600 1.4E-05 2.1 7.4E-06 2.1 6.5E-06 2.0
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Euler equations: Shock tube solution

We consider the initial data given by

ρ0pxq “
#

1 if x ă 0.5,
0.125 otherwise,

u0pxq “ 0, p0pxq “
#

1 if x ă 0.5,
0.1 otherwise,

over the domain r0, 1s. The final time is 0.2. To respect the periodic conditions on
the boundaries, we work on the domain r´1, 1s and we symmetrize the shock tube
problem on r´1, 0s.
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Euler equations: Shock tube solution
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Euler equations: Shock tube solution
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Euler equations: Shock tube solution

Second-order scheme errors Θm
i “ Θm

a,i
cells L1 order L2 order L8 order
100 7.2E-02 - 7.1E-02 - 2.7E-01 -
200 4.0E-02 0.8 4.5E-02 0.7 2.4E-01 0.1
400 2.2E-02 0.9 2.9E-02 0.6 2.4E-01 0.0
800 1.2E-02 0.9 1.9E-02 0.6 1.9E-01 0.4
1600 6.4E-03 0.9 1.3E-02 0.6 1.7E-01 0.1

Second-order scheme errors Θm
i “ Θm

b,i
cells L1 order L2 order L8 order
100 5.9E-02 - 6.2E-02 - 1.9E-01 -
200 3.3E-02 0.8 3.9E-02 0.7 1.9E-01 0.0
400 1.8E-02 0.9 2.5E-02 0.6 1.9E-01 0.0
800 9.4E-03 0.9 1.5E-02 0.7 1.3E-01 0.6
1600 5.2E-03 0.9 1.1E-02 0.5 1.6E-01 0.4

Second-order scheme errors Θm
i “ Θm

c,ε,i
cells L1 order L2 order L8 order
100 6.0E-02 - 6.3E-02 - 2.5E-01 -
200 3.2E-02 0.9 4.0E-02 0.7 2.3E-01 0.1
400 1.7E-02 0.9 2.6E-02 0.6 2.4E-01 0.0
800 8.7E-03 1.0 1.6E-02 0.7 1.7E-01 0.5
1600 4.5E-03 0.9 1.1E-02 0.5 2.2E-01 0.4
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Euler equations: 2D extension

• Isentropic vertex

• r0, 10s2, t “ 0.1.

• Unstructered meshes from 400 to 105 cells

• Entropy given by ηpwq “ ´ρln pp{ργq

h L1 order L2 order L8 order
6.2E-01 1.3E-01 - 2.8E-02 - 1.5E-02 -
3.4E-01 3.4E-02 2.2 8.1E-03 2.0 7.9E-03 1.1
1.7E-01 1.0E-02 1.8 2.6E-03 1.7 3.6E-03 1.2
8.9E-02 2.8E-03 2.0 6.7E-04 2.1 7.6E-04 2.4
4.5E-02 7.8E-04 1.9 2.0E-04 1.8 2.9E-04 1.4
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Euler equations: 2D extension

• Shock reflexion

• Unstructered meshes « 115 000 cells

• Entropy given by ηpwq “ ´ρln pp{ργq
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Thank you for your attention
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