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What is a Langmuir probe ?

A plasma is a gas made of electrically charged particles.

• A Langmuir probe is a spherical or cylindrical metallic measurement device
used to study plasmas.

• The probe voltage is varied to be either attractive or repulsive for the
electrons and it registers the current.

• It permits to determine the plasma parameters: its density, its temperature
and its potential.
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What is a Langmuir probe ?

Figure 1: One of the two Langmuir probes from the Swedish institute of Space
Physics in Uppsala on board ESA’s space vehicle Rosetta

Figure 2: Rosetta in orbit around the 67P/G-C comet
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References in physics

The modeling of probe-plasma interaction is a long time discussed problem in
plasma physics.

• Smott and Langmuir, The theory of collectors in Gaseous Discharges, 1926.

• Bernstein and Rabinowitz, Theory of electrotatics probes in a low-density plasmas, 1959.

• Allen, Probe theory - the orbital motion approach. Physica Scripta, 1992.

• Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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References in applied mathematics

This problem has not been discussed that much in the mathematical
community.

• Raviart and Greengard, A boundary value problem for the stationary Vlasov-Poisson
equations: the plane diode, 1990.

• Degond, Raviart and al, The child-Langmuir asymptotics of the Vlasov-Poisson equation for
cylindrically of spherically symmetric diode, 1996.
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Two difficulties

The mass me of an electron is much smaller than the mass mi of an ion:

• It causes a charge separation in the vicinity of the probe called the Debye
sheath.

In non-planar geometry, it is not clear whether a particle reaches the probe.
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Model and results



Modeling a cylindrical Langmuir probe

Main assumptions and simplifications:

• The probe is an infinite cylinder of radius 1.

• The plasma is collisionless and unmagnetized (Vlasov-Poisson equations).
• The plasma has reached its permanent regime (steady equations).
• Invariance and symmetries along the probe (polar coordinate).
• Invariance by rotation (radial Poisson equation).
• Invariance by axial symmetry (no ortho-radial current).
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Phase-space coordinate system

Particles positions in phase-space in the polar coordinate system write:
$

’

’

&

’

’

%

x “ px , yq “ rer , r “
a

x2 ` y 2, er “ pcos θ, sin θq
v :“ pvx , vy q “ vrer ` vθeθ, eθ “ p´ sin θ, cos θq,
vr “ v ¨ er , vθ “ v ¨ eθ.

Figure 3: Sketch of a trajectory of a particle into a radial force field coming from the
outer ionizing source at r “ rb .
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The Vlasov-Poisson equations

• Vlasov equation for the ionic density fipr , vr , vθq:

vr Br fi ´
vrvθ

r Bvθ fi `
ˆ

v 2
θ

r ´ Brφ

˙

Bvr fi “ 0,

• Vlasov equation for the electronic density fepr , vr , vθq:

vr Br fe ´
vrvθ

r Bvθ fe `
ˆ

v 2
θ

r ` Brφ

˙

Bvr fe “ 0,

• Radial Poisson equation for the electrostatic potential φprq:

´
λ2

r
d
dr

ˆ

r dφ
dr

˙

prq “ niprq ´ neprq.

The domain of computation is pr , vr , vθq P p1, rbq ˆR2. The parameter λ ! 1 is
the Debye length.
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The Vlasov-Poisson equations

The ions and electrons macroscopic charge densities are:

niprq :“
ż

R2
fipr , vr , vθqdvrdvθ, neprq :“

ż

R2
fepr , vr , vθqdvrdvθ.

The ions and electrons radial current densities are:

Jiprq :“
ż

R2
fipr , vr , vθqvrdvrdvθ, Jeprq :“ 1

?
µ

ż

R2
fepr , vr , vθqvrdvrdvθ.

where µ “ me{mi ! 1 is the mass ratio.
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Boundary conditions

• Incoming particles from the plasma core:

@vr ă 0 fiprb, vr , vθq “ f b
i pvr , vθq, feprb, vr , vθq “ f b

e pvr , vθq,

where pvr , vθq ÞÑ f b
i pvr , vθq, pvr , vθq ÞÑ f b

e pvr , vθq are given functions.

• Non-emitting Langmuir probe:

@vr ą 0 fip1, vr , vθq “ 0, fep1, vr , vθq “ 0.

• Boundary datum for the Poisson equation:

φp1q “ φp P R, φprbq “ 0.

φp is the probe potential.
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An existence theorem

Theorem (B., Godard-Cadillac)
Assume that the incoming particle distributions f bi and f be are in L1 and satisfy the following
integrability conditions:

}f }L1vθ pL
8
vr pvr dvr qq

:“
ż

R
sup
vrPR

|vr f pvr , vθq|dvθ ă `8,

}f }L1vr pL8vθ ;|vr |´γ dvr q
:“

ż

R
sup
vθPR

|f pvr , vθq|
dvr
|vr |γ

ă `8,

for some 0 ă γ ă 1. Then there exists a solution for the Vlasov-Poisson system for the
Langmuir probe (weak solution for Vlasov and strong for Poisson). Moreover, the solutions of
the Vlasov equations are given by explicit formula depending on φ, f bi , f

b
e .

A sufficient condition for the integrability conditions:

@pvr , vθq, |f pvr , vθq| ď
1

1` |vr | ` |vθ|2
.

Condition satisfied by Maxwellian distributions.
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The radial solutions

Radial solutions are measure valued solutions in the form:

fi pr , vr , vθq “ gi pr , vr q b δvθ“0, fepr , vr , vθq “ gepr , vr q b δvθ“0.

It is a degenerate case: particles move radially.

Theorem (B., Crestetto, Godard-Cadillac)
Let φp ă 0, λ ą 0. Assume the incoming radial distribution of particles gb

i pvr q and gb
e pvr q are

in L1 and sup
vrPR

|vrgpvr q| ă `8. Assume additionally:

• gb
e P W 2,1

pR´q satisfies some differential inequalities (not written here).

• The generalized Bohm condition:
ż 0

´8

gb
i pwq
w2 dw ă gb

e

´

´
a

´2φp

¯

p´2φpq
´ 1

2 `

ż

?
´2φp

´8

dgb
e

dw
p´|v |q

dv
|v |
.

• The neutrality in the plasma core: ni prbq “ neprbq.
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

• φλ has the regularity C2
r1, rbs and it is increasing concave.

• φλ converges locally uniformly to zero in p1, rbs as λÑ 0.

• φ verifies the boundary-layer estimate:

λ2

2

ż rb

1
r
ˇ

ˇ

ˇ

ˇ

dφλ
dr
prq

ˇ

ˇ

ˇ

ˇ

2
dr `

α

2

ż rb

1
|φλprq|2dr “

λÝÑ0
Opλq.

where α ą 0 is a constant independent on λ.

• The plasma is quasi-neutral: }ni ´ ne}L1r1,rbs Ñ 0 as λÑ 0.

• φ decays exponentially fast: there exists a constant C ą 0 such that

φp e
´C r´1

λ
?rb ď φλprq ď 0.
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Some aspects of the analysis



The natural strategy

• Fix the potential φ P W 2,8
r1, rbs and compute explicitly the solutions of the Vlasov

equations using the method of characteristics.

• Compute the densities ni ,ne and study the resulting Poisson equation.
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The linear Vlasov equation

• The characteristics of the Vlasov equation with a potential ψ “ ˘φ are given by the
solutions of:

$

’

’

&

’

’

%

d
dt rptq “ vr ptq,
d
dt vr ptq “

v2
θ
ptq

rptq ´
d
dr ψprptqq,

d
dt vθptq “ ´

vr ptqvθptq
rptq .

Solutions of the Vlasov equation are constant on the characteristics.

• Constants of motion:
d
dt

˜

v2r ptq
2

`
vθptq2

2
` ψprptqq

¸

“ 0,
d
dt
prptqvθptqq “ 0.

• The characteristics are contained in the level sets defined for L P R and e P R by:

CL,e “

#

pr , vr , vθq P p1, rbq ˆ R2 :
v2r
2
`

v2θ
2
` ψprq “ e and rvθ “ L

+

.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 15 / 42



The linear Vlasov equation

• The characteristics of the Vlasov equation with a potential ψ “ ˘φ are given by the
solutions of:

$

’

’

&

’

’

%

d
dt rptq “ vr ptq,
d
dt vr ptq “

v2
θ
ptq

rptq ´
d
dr ψprptqq,

d
dt vθptq “ ´

vr ptqvθptq
rptq .

Solutions of the Vlasov equation are constant on the characteristics.

• Constants of motion:
d
dt

˜

v2r ptq
2

`
vθptq2

2
` ψprptqq

¸

“ 0,
d
dt
prptqvθptqq “ 0.

• The characteristics are contained in the level sets defined for L P R and e P R by:

CL,e “

#

pr , vr , vθq P p1, rbq ˆ R2 :
v2r
2
`

v2θ
2
` ψprq “ e and rvθ “ L

+

.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 15 / 42



The linear Vlasov equation

• The characteristics of the Vlasov equation with a potential ψ “ ˘φ are given by the
solutions of:

$

’

’

&

’

’

%

d
dt rptq “ vr ptq,
d
dt vr ptq “

v2
θ
ptq

rptq ´
d
dr ψprptqq,

d
dt vθptq “ ´

vr ptqvθptq
rptq .

Solutions of the Vlasov equation are constant on the characteristics.

• Constants of motion:
d
dt

˜

v2r ptq
2

`
vθptq2

2
` ψprptqq

¸

“ 0,
d
dt
prptqvθptqq “ 0.

• The characteristics are contained in the level sets defined for L P R and e P R by:

CL,e “

#

pr , vr , vθq P p1, rbq ˆ R2 :
v2r
2
`

v2θ
2
` ψprq “ e and rvθ “ L

+

.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 15 / 42



Phase space study

• For L P R being fixed, define the effective potential:

ULrψsprq “
L2

2r2
` ψprq.

• For each L P R, study the phase space pr , vr q by looking at the level sets of the function:

pr , vr q ÞÑ
v2r
2
` ULrψsprq.

• The maximum value
ULrψs “ max

rPr1,rbs
ULrψsprq

is a global potential barrier.
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Phase space study

• Cover the phase space pr , vr q with the curves of equation: v2r
2 “ e ´ ULrψsprq.

• Study the barrier position when e ă ULrψs :
rpL, eq :“ minta P r1, rbs : @r P ra, rbs, ULrψsprq ď eu.

vr

UL “ e

rrpL, eq

r

UL

UL
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Phase space study

• Decomposition of the phase space:

D1
brψspLq :“

"

pr , vr q P p1, rbq ˆ R : vr ă ´
b

2pULrψs ´ ULrψsprqq
*

,

D2
brψspLq :“

#

pr , vr q P p1, rbq ˆ R :
v2r
2
` ULrψsprq ă ULrψs and r ą rpL, eq

+

.

• The solution of the Vlasov equation is constant on the characteristics, it is natural to define:

f pr , vr , vθq “
#

f bp´
a

v2r ` 2pULrψsprq ´ ULrψsprbqq,
rvθ
rb
q if pr , vr q P DbrψspLq, L “ rvθ,

0 otherwise.

It defines a weak solution to the Vlasov equation for a potential ψ “ ˘φ.
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Computation of the macroscopic densities and currents

• Define ρ̃rψs :“ infta P r1, rbs : for a.e r P ra, rbs, ψprq ď 0u.

Then
rpL, eq “ ρ̃rULrψs ´ es.

• Define:
β : Rˆ r1, rbs ˆ R ÝÑ R

pν, r , Lq ÞÝÑ 2ν ` L2
ˆ 1
r2
´

1
r2b

˙

.

• Define:
Γ : Rˆ r1, rbs ˆ Rˆ R ÝÑ R

pν, r ,w , Lq ÞÝÑ

$

’

&

’

%

pwq´
a

w2 ´ βpν, r , Lq
if w2

ą βpν, r , Lq,

0 otherwise.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 19 / 42



Computation of the macroscopic densities and currents

• Define ρ̃rψs :“ infta P r1, rbs : for a.e r P ra, rbs, ψprq ď 0u.

Then
rpL, eq “ ρ̃rULrψs ´ es.

• Define:
β : Rˆ r1, rbs ˆ R ÝÑ R

pν, r , Lq ÞÝÑ 2ν ` L2
ˆ 1
r2
´

1
r2b

˙

.

• Define:
Γ : Rˆ r1, rbs ˆ Rˆ R ÝÑ R

pν, r ,w , Lq ÞÝÑ

$

’

&

’

%

pwq´
a

w2 ´ βpν, r , Lq
if w2

ą βpν, r , Lq,

0 otherwise.
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Computation of the macroscopic densities and currents

Proposition
The macroscopic density and current associated with a potential ψ “ ˘φ are given by:

nrψsprq “
1
r
grψspψprq, rq

grψspν, rq “
ż

R2
Γ
`

ν, r ,w , L
˘

f b
ˆ

w ,
L
rb

˙ˆ

1`1
w2` L2

r2b
ă2ULrψs

˙

1
rě rρ

”

ψ` L2
2
`

1
‚ 2 ´

1
r2b

˘

´w2
ı dw dL,

Jrψsprq “
2
r

ż L“`8

L“0

ż

´

b

2pULrψss´ULrψsprbqq

´8

f b
ˆ

w ;
L
rb

˙

w dw dL.

The quantities ULrψs and ρ̃ are non-local.
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Existence of a solution

• We are interested in solving the Poisson problem:
$

’

&

’

%

´λ2 d
dr

ˆ

r dφ
dr

˙

prq “ grφspφprq, rq ´ gr´φsp´φprq, rq,

φp1q “ φp φprbq “ 0.

• The bracket rφs encodes the non-locality.

• The source term in the Poisson equation thus is non-linear and non-local.
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Existence of a solution: a fixed-point method

The strategy:

• Fix the non-local terms.

• Solve the local semi-linear Poisson problem.

• Establish compactness.

• Pass to the limit to conclude.

Let φn
P W 2,8

r1, rbs such that φn
p1q “ φp and φn

prbq “ 0. Solve for φn`1 :
$

’

&

’

%

´λ2 d
dr

ˆ

r dφn`1
dr

˙

prq “ grφn
spφprqn`1, rq ´ gr´φn

sp´φprqn`1, rq,

φn`1
p1q “ φp φn`1

prbq “ 0.
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Existence of a solution: compactness

A key estimate to extract a converging subsequence is given by the following

Lemma (Functions gi and ge are finite)

Let f : R2
Ñ R measurable and let p P r1, 2q. Then,

sup
νPR

sup
rPr1,rbs

ż

`8

´8

ż

`8

´8

|w |p
ˇ

ˇw2 ´ L2
` 1
r2
´ 1

r2b

˘

´ 2ν
ˇ

ˇ

p
2

ˇ

ˇf pw , Lq
ˇ

ˇ dw dL ď 2}f }L1

`
4

2´ p
}f }L1LpL

8
w pw dwqq;

The non linear source term grφn
spφprqn`1, rq ´ gr´φn

sp´φprqn`1, rq is uniformly bounded in

L8. We get that the sequence pφn
q is bounded in W 2,8. This implies compactness by

Rellich-Kondrachov theorem. In particular φn converges (up to a sub seq) uniformly to some φ.
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Existence of a solution: passing to the limit

How to pass to the limit in the quantity:
ρ̃rψ ´ es :“ infta P r1, rbs @r ě a ψprq ď eu.

It is in general not continuous with respect to ψ for the L8 topology. The problem is at strict
local maxima of ψ.

}ψ1 ´ ψ2}L8 ă ε

e

ρ̃rψ1 ´ es ρ̃rψ2 ´ es

ψ2

ψ1

Lemma (Convergence property for rρ)

Let pφnq be a sequence of continuous functions that is uniformly converging towards φ. Then for
almost every e P R,

rρrφn ´ es ÝÑ rρrφ´ es.

Enough to pass to the limit since ρ̃ only appears under an integral. The final ingredient to

conclude is an equicontinuity estimate of the non linear source term of the Poisson equation.
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Numerics



Gradient descent based iterative method: continuous setting

Iterative method:

´λ
2 d
dr

ˆ

r
dφn`1

dr

˙

prq “ grφn
spφprqn`1

, rq ´ gr´φn
sp´φprqn`1

, rq

• If φn is given, define Grφn
spν, rq “

şν
0 grφn

spν1, rqdν1.

• Consider the energy functional:

Jrφn
spψq “

ż rb

1

λ2

2
r
ˇ

ˇ

ˇ

ˇ

dψ
dr
prq

ˇ

ˇ

ˇ

ˇ

2
` Gr´φn

sp´ψprq, rq ´ Grφn
spψprq, rqdr .

• Compute iteratively:
φ
n`1

“ φ
n
´ ρ∇Jrφn

spφ
n
q, ρ ą 0.

The gradient ∇Jrφn
spφn

q P V is the unique Riesz-representation of the Fréchet differential
of J at φn for a chosen inner product p¨ ; ¨q:

p∇hJrφn
hspφ

n
hq;ϕq “ dJrφn

hspφ
n
hqpϕq @ϕ P V 0

h .

• At convergence, it solves the non-linear and non-local Poisson problem.
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval r1, rbs of size h “ prb ´ 1q{pN ` 1q
φn
h P Vh :“ continuous and piecewise affine functions on r1, rbs.

• If ψ P Vh, ρ̃rψ ´ es is computed by interpolation.

ρ̃rψh ´ es

e

ψh

rk`1rk

• The indicator 1
w2` L2

r2b
ă2ULrψs

is regularized because oscillations may appear if high order

numerical integration is used.
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Radial solutions: the 1D sheath problem

x

z

y

bulk plasma

Wallni

-

+

+ - + -

+-+-

+ - + -

-
-

+

+

+

ni ą ne

« ne

The one dimensional sheath problem is a classic of the plasma physics 1. We have done a
mathematical analysis to validate the code. Boundary conditions are in the form:

f bi pvr , vθq “ gb
i pvr q b δvθ“0, f be pvr , vθq “ gb

e pvr q b δvθ“0,

with

gb
i pvr q “

v2r
?
2π

e´
pvr´ui q

2
2 , ui “ ´2.0 gb

e pvr q “
nb
?
2π

e´
v2r
2 .

• nb is fixed a priori to ensure ni prbq “ neprbq.
• The Bohm condition

ş0
´8

gb
i pvr qv

´2
r dvr ă 1 is verified.

Numerical parameters: rb “ 3, λ “ 0.1,N “ 200. The gradient algorithm is stopped when

}∇hJrφn
hspφ

n
hq}L8 ă 10´8.

1K-U Riemann, The Bohm criterion and Sheath formation, Journal of Physics D: Applied Physics,
1991
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Radial solutions: boundary layer profile and positivity of the charge

Figure 4: Radial case with satisfied Bohm condition: potential φprq (left) and density
difference rni prq ´ rneprq (right) for φp varying from ´0.6 to ´3.
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Radial solutions: exponential decay

Figure 5: Radial case with satisfied Bohm condition: potential φprq (left) and density
difference rni prq ´ rneprq (right) for φp varying from ´0.6 to ´3 in semi-log scale.
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Radial solutions: the probe characteristic (I-V curve)

Figure 6: Radial case: total current density at the probe pji ´ jeqpr “ 1, φpq as a
function of the probe potential.

The radial current is a monotone increasing function of φp.
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Two dimensional solutions : perturbation of the radial setting

It is a prospective test case. This is motivated by the work of Laframbroise 2. Boundary conditions
are in the form:

f bi pvr , vθq “
1
?
2π

e´
v2r
2 bMT pvθq, f be pvr , vθq “

nb
?
2π

e´
v2r
2 bMT pvθq

where

MT pvθq “
1

?
2πT

e´
v2
θ

2T , T ą 0.

• nb is fixed a priori to ensure ni prbq “ neprbq.

• Two cases are simulated : T “ 0.1 and T “ 0.05.

Numerical parameters: rb “ 3, λ “ 0.1,N “ 200. The gradient algorithm is stopped when

}∇hJrφn
hspφ

n
hq}L8 ă 10´4.

2Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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Two dimensional solutions: potential and density

Figure 7: Maxwellian case: potential φprq (left) and density difference rni prq ´ rneprq
(right) for φp “ ´3 and two values of T: 0.05 and 0.1.

There seems to be a loss of monotony in the potential. It may yield the
existence of unpopulated orbits in the phase space. The potential does not
seem to connect smoothly with the plasma core r ą rb.
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Two dimensional solutions: ionic and electronic density

Figure 8: Maxwellian case: potential φprq (left) and density difference rni prq ´ rneprq
(right) for φp “ ´3 and two values of T: 0.05 and 0.1.

There is a clear loss of monotony in the ionic and electronic densities. It seems
that unpopulated orbits do exist: in the range r P r1.7, 2.7s for the ions and in
the range r P r1.5, 2.0s for the electrons.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 33 / 42



Two dimensional solutions: ionic phase space

Ionic phase space: pr , vr , L “ 0q

Figure 9: Maxwellian case: ionic distribution function fi pr , vr q for T “ 0.05 (left),
T “ 0.1 (right).
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Two dimensional solutions: ionic phase space

Ionic phase space: pr , vr , L ‰ 0q

Figure 10: Maxwellian case: ionic distribution function fi pr , vr q for T “ 0.05 (left),
T “ 0.1 (right)

The effective potential is ULprq “ `φprq ` L
2r2 .
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Two dimensional solutions: electronic phase space

Electronic phase space: pr , vr , L “ 0q

Figure 11: Maxwellian case: ionic distribution function fepr , vr q for T “ 0.05 (left),
T “ 0.1 (right).
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Two dimensional solutions: electronic phase space

Electronic phase space: pr , vr , L ‰ 0q

Figure 12: Maxwellian case: ionic distribution function fepr , vr q for T “ 0.05 (left),
T “ 0.1 (right), and three increasing values of vθ from top to bottom.

The effective potential is ULprq “ ´φprq ` L
2r2 .
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Two dimensional solutions: the probe characteristic (I-V curve)

Figure 13: Maxwellian case: total current density at the probe pji ´ jeqpr “ 1, φpq as a
function of the probe potential.

Still seems to be monotone for the range of parameter we used. Not proven
and not clear !
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Two dimensional solutions : ionic trajectories

Figure 14: Maxwellian case: φ and ionic trajectories.
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Two dimensional solutions : electronic trajectories

Figure 15: Maxwellian case: φ and electronic trajectories.
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Conclusion



Conclusion

• We proved the existence of solutions for a kinetic model of plasma-probe interaction.

• We obtained qualitative description and quantitative estimates of the solutions in the radial
setting.

• We proposed a numerical method to compute the solutions which is able to capture
unpopulated orbits.

• Comparison with the results of Laframboise 3 needs more numerical investigation.

• Dissemination:

• "Existence of solutions for a bi species kinetic model of a cylindrical Langmuir probe,
M.Badsi and L. Godard-Cadillac , in Communications in Mathematical Sciences, 2022"

• "Variational radial solutions and numerical simulations for a kinetic model of a
cylindrical Langmuir probe, A. Crestteto, M.Badsi and L. Godard-Cadillac, preprint
HAL, 2022."

3Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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Thank you for paying attention.
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