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What is a Langmuir probe ?

A plasma is a gas made of electrically charged particles.
e A Langmuir probe is a spherical or cylindrical metallic measurement device
used to study plasmas.

e The probe voltage is varied to be either attractive or repulsive for the
electrons and it registers the current.

e |t permits to determine the plasma parameters: its density, its temperature
and its potential.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 1/42



What is a Langmuir probe ?

Figure 1: One of the two Langmuir probes from the Swedish institute of Space
Physics in Uppsala on board ESA's space vehicle Rosetta

Figure 2: Rosetta in orbit around the 67P/G-C comet
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References in physics

The modeling of probe-plasma interaction is a long time discussed problem in
plasma physics.

e Smott and Langmuir, The theory of collectors in Gaseous Discharges, 1926.
e Bernstein and Rabinowitz, Theory of electrotatics probes in a low-density plasmas, 1959.
e Allen, Probe theory - the orbital motion approach. Physica Scripta, 1992.

e Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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References in applied mathematics

This problem has not been discussed that much in the mathematical
community.

e Raviart and Greengard, A boundary value problem for the stationary Vlasov-Poisson
equations: the plane diode, 1990.

e Degond, Raviart and al, The child-Langmuir asymptotics of the Vlasov-Poisson equation for
cylindrically of spherically symmetric diode, 1996.
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Two difficulties

The mass me of an electron is much smaller than the mass m; of an ion:

e It causes a charge separation in the vicinity of the probe called the Debye

sheath.

In non-planar geometry, it is not clear whether a particle reaches the probe.
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Model and results



Modeling a cylindrical Langmuir probe

Main assumptions and simplifications:

e The probe is an infinite cylinder of radius 1.
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Main assumptions and simplifications:

e The probe is an infinite cylinder of radius 1.

e The plasma is collisionless and unmagnetized (Vlasov-Poisson equations).
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Modeling a cylindrical Langmuir probe

Main assumptions and simplifications:

e The probe is an infinite cylinder of radius 1.
e The plasma is collisionless and unmagnetized (Vlasov-Poisson equations).

e The plasma has reached its permanent regime (steady equations).
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Modeling a cylindrical Langmuir probe

Main assumptions and simplifications:

e The probe is an infinite cylinder of radius 1.

e The plasma is collisionless and unmagnetized (Vlasov-Poisson equations).
e The plasma has reached its permanent regime (steady equations).

e Invariance and symmetries along the probe (polar coordinate).

e Invariance by rotation (radial Poisson equation).

Invariance by axial symmetry (no ortho-radial current).
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Phase-space coordinate system

Particles positions in phase-space in the polar coordinate system write:

x=(x,y) =re,, r=+/x2+y2, e = (cos6,sin0)
V= (VX7 Vy) = Vr®r + Vo®y, €9 = (—sin €7C059),

VP =V - @, Vg =V - @®g.

Figure 3: Sketch of a trajectory of a particle into a radial force field coming from the
outer ionizing source at r = rp.
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The Vlasov-Poisson equations

e Vlasov equation for the ionic density fi(r, vi, vo):

2

Oy fi + (V—f - r¢) o, f =0,

ViV
vy Orf; —

r
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The Vlasov-Poisson equations

e Vlasov equation for the ionic density fi(r, vi, vo):

ViV
vy Orf; —

r

V2
avefi + (Te - r¢> 6v,f;' = 07

e Vlasov equation for the electronic density fe(r, vi, vp):

. A7

Vrorfe - -
r

V2
v fe + (79 + a,¢>) ov,fo =0,
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The Vlasov-Poisson equations

e Vlasov equation for the ionic density fi(r, vi, vo):

vy Orf; — KA 6V9f + (* - r¢) oy fi =0,

e Vlasov equation for the electronic density fe(r, vi, vp):

Vr Vo
Vr arfe -

V2
=0 fet (79 + a,¢) o, fo =0,

e Radial Poisson equation for the electrostatic potential ¢(r):

22 (r22) ) = ) - ),

The domain of computation is (r, v,, vg) € (1, ) x R?. The parameter A « 1 is
the Debye length.
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The Vlasov-Poisson equations

The ions and electrons macroscopic charge densities are:

ni(r) = fi(r, ve,vo)dvrdve, ne(r) = fe(r, Vi, vo)dvedvy.
R2

R2
The ions and electrons radial current densities are:

1
Ji(r) := fi(r,ve,vo)vidvidvg, Je(r) = — fe(r, v, vo)vrdv,dvg.
(r) » ( 0) 0 (r) 75 ) ( 0) 0

where p = me/m; « 1 is the mass ratio.

Mehdi Badsi
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Boundary conditions

e Incoming particles from the plasma core:
b b
Vv <0 fi(r, v, vo) = £ (Vi Vo), fe(rb, Vi Vo) = £ (v, Vo),

where (v,, vg) — £2(v,, va), (vi, ve) — 2(v,, vg) are given functions.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 10 / 42



Boundary conditions

e Incoming particles from the plasma core:
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e Non-emitting Langmuir probe:

Vv, >0 fi(1,ve,vo) =0, f(l,v,,vp)=0.
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Boundary conditions

e Incoming particles from the plasma core:
b b
Vv <0 fi(r, v, vo) = £ (Vi Vo), fe(rb, Vi Vo) = £ (v, Vo),

where (v,, vg) — £2(v,, va), (vi, ve) — 2(v,, vg) are given functions.

e Non-emitting Langmuir probe:

Vv, >0 fi(1,ve,vo) =0, f(l,v,,vp)=0.

e Boundary datum for the Poisson equation:

o(1) =¢peR, ¢(rn) =0.

¢p is the probe potential.
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An existence theorem

Theorem (B., Godard-Cadillac)
Assume that the incoming particle distributions f,-b and feb are in L' and satisfy the following

integrability conditions:

f o = f dvg < +00
I HL&@(Lf(v,dv,)) L vSrUeFI;IVr (vry vo)|dve < +00,

Vr

[ve |7

HfHLL(LVT;;W,\—’YdV,) = L sup [ (vr, vo)| <+,

vgER
for some 0 < v < 1. Then there exists a solution for the Vlasov-Poisson system for the
Langmuir probe (weak solution for Vlasov and strong for Poisson). Moreover, the solutions of
the Vlasov equations are given by explicit formula depending on ¢, ﬂ-b, f:‘

A sufficient condition for the integrability conditions:
1

Y(vr,ve), |f(vi,vo)|l < ——————.
(e v)s 170 v0)| < s

Condition satisfied by Maxwellian distributions.
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The radial solutions

Radial solutions are measure valued solutions in the form:

fi(r,vi,vo) = gi(r,v) ® dvy=o0, fe(r,vi,vo) = ge(r, vi) ® dyy=o.
It is a degenerate case: particles move radially.
Theorem (B., Crestetto, Godard-Cadillac)

Let ¢, < 0, X\ > 0. Assume the incoming radial distribution of particles g,-b(v,) and geb(v,) are

in L' and sup|v,g(v,)| < +00. Assume additionally:
vrER

o g’ e W2(R™) satisfies some differential inequalities (not written here).
e The generalized Bohm condition:

j_om 80 < g8 (~v/=25) (—20) "} Vi

(—Ivh 2.

vl

e The neutrality in the plasma core: nj(rp) = ne(rp).
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

e ¢ has the regularity (,'2[17 rp] and it is increasing concave.
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

e ¢ has the regularity (,'2[17 rp] and it is increasing concave.

e ¢ converges locally uniformly to zero in (1,r,] as A — 0.
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

e ¢ has the regularity (,'2[17 rp] and it is increasing concave.

e ¢ converges locally uniformly to zero in (1,r,] as A — 0.

e ¢ verifies the boundary-layer estimate:
N (" [dox
| ()
2 )i dr

where @ > 0 is a constant independent on .

2 T
dr + EJ” lr(Ndr = O().
2 ) A

—0
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

¢ has the regularity (,'2[17 rp] and it is increasing concave.

e ¢ converges locally uniformly to zero in (1,r,] as A — 0.

e ¢ verifies the boundary-layer estimate:
A2 [ |doy
— r
2 )i dr

where @ > 0 is a constant independent on .

2 a (b >
(r) dr+5£ [ ()] dr>\= O(N).

—0

e The plasma is quasi-neutral: |[n; — ne|;1p; .} — 0as A — 0.
e ¢ decays exponentially fast: there exists a constant C > 0 such that

_cr=1
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Some aspects of the analysis



The natural strategy

e Fix the potential ¢ € Wz‘oo[l, rp] and compute explicitly the solutions of the Vlasov
equations using the method of characteristics.

e Compute the densities nj,n. and study the resulting Poisson equation.
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The linear Vlasov equation

e The characteristics of the Vlasov equation with a potential ¢ = +¢ are given by the
solutions of:
Lr(8) = (),
710)
%Vr(t) = ,e(t) - %Wf(t))

vr(t)vg (t)
Sve(t) = — 0@

Solutions of the Vlasov equation are constant on the characteristics.
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The linear Vlasov equation

e The characteristics of the Vlasov equation with a potential ¢ = +¢ are given by the
solutions of:
Lr(8) = (),
710)
%Vr(t) = ,e(t) - %Wf(t))

vr(t)vg (t)
Sve(t) = — 0@

Solutions of the Vlasov equation are constant on the characteristics.

e Constants of motion:
d (), v
dt 2 2

+ wmm) —0, S v =0
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The linear Vlasov equation

e The characteristics of the Vlasov equation with a potential ¢ = +¢ are given by the
solutions of:
Lr(8) = (),
710)
%Vr(t) = ,e(t) - %Wf(t))

vr(t)vg (t)
Sve(t) = — 0@

Solutions of the Vlasov equation are constant on the characteristics.

e Constants of motion:
d (), v
dt 2 2

+ wmm) —0, S v =0

e The characteristics are contained in the level sets defined for L € R and e € R by:

2 2
CL,e:{(r,v,,\/@)e(l,rb)><]R2 3 v?'+‘/2—9+1/1(r):e and rve:L}.
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Phase space study

e For L € R being fixed, define the effective potential:
2

1) = 5 + 900
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Phase space study

e For L € R being fixed, define the effective potential:
2

1) = 5 + 900

e For each L € R, study the phase space (r, v,) by looking at the level sets of the function:

V2
(rov) = L+ U (0):

e The maximum value

UL[p] = max U [Y](r)

re[1,rp]

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 16 / 42



Phase space study

e For L € R being fixed, define the effective potential:
2

1) = 5 + 900

e For each L € R, study the phase space (r, v,) by looking at the level sets of the function:

V2
(rov) = L+ U (0):

e The maximum value

UL[p] = max U [Y](r)

re[1,rp]

is a global potential barrier.
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Phase space study

2
e Cover the phase space (r, v,) with the curves of equation: VT’ =e—UL[Y](r).
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Phase space study

e Cover the phase space (r, v,) with the curves of equation: VT =e—UL[y](r).

e Study the barrier position when e < U [¢] :
r(L,e) :=min{a€e [1,r] : Vre[a ], Ulyp](r) <e}.

Vr
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Phase space study

e Decomposition of the phase space:

DAI(L) = {( W)€ (L) xR : v < —\200[9] fuL[w]<r>>},
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Phase space study

e Decomposition of the phase space:

DAI(L) = {( W)€ (L) xR : v < —\200[9] fuL[w]<r>>},

2
Di[4](L) := {(n vi)e (1,m) xR : V?r + UL [P](r) < UL[b] and r > r(L, e)}.
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Phase space study

e Decomposition of the phase space:

DAI(L) = {( W)€ (L) xR : v < —\200[9] fuL[w]<r>>},

V2 —_—
DywI(L) = {(n v) € (L) xR ¢ 2L+ U[(r) < Uld] and r > r(L,e) b
e The solution of the Vlasov equation is constant on the characteristics, it is natural to define:

FP (= V2 + 2] (r) = ULle](r6)), 72) if (rvr) € D[9](L), L = rve,

0 otherwise.

f(ryve,vg) = {

It defines a weak solution to the Vlasov equation for a potential ¢ = +¢.
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Computation of the macroscopic densities and currents

e Define p[y] :=inf{ae [1,r,] : foraere[a,n], (r) <0}
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Computation of the macroscopic densities and currents

e Define p[y] :=inf{ae [1,r,] : foraere[a,n], (r) <0}

Then
r(L,e) = plUL[Y] — e].
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Computation of the macroscopic densities and currents

e Define p[y] :=inf{ae [1,r,] : foraere[a,n], (r) <0}

Then
r(L,e) = plUL[y] — e].

e Define:

B: Rx[lL,np]xR — R

1 1
(v, r, L) — 2u+L2<—2—E).
e Define:
M Rx[lL,n]xRxR — R
L if w2 > B(v,r, L),
(v, r,w, L) — w2 — B(v,r, L)
0

otherwise.

Mehdi Badsi
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Computation of the macroscopic densities and currents

Proposition

The macroscopic density and current associated with a potential 1) = +¢ are given by:

() = ~&l¥1(r), )

L
= r L) (w, =) (141 _ dw dL,
glb](v, r) L@ (vyrow, L) (w, rb)( + W2+%<2ML[¢]) ,;5[1“&(%,%)7\”2] w
’b rb
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Computation of the macroscopic densities and currents

Proposition

The macroscopic density and current associated with a potential 1) = +¢ are given by:
1
n[¢](r) = —glpl((r), )

.
W) = [ T w ) LY (141 "
g v, r) = - v, W, w, rb W2+%<2LTL['IP] r;ﬁ[«wr“
b

. dw dL,
7 (&-

)]

o=

2 L=t (—\ 2N 1 () L
J[w](r)=;L70 f\ t e fb<w;7b> w dw dL.

©

The quantities 2/, [¢)] and / are non-local.
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Existence of a solution

e We are interested in solving the Poisson problem:
324 (4 ) () = £l8)(6(r).1) — £T-0)(~ (1)),
#(1) = ¢p (rs) = 0.

e The bracket [¢] encodes the non-locality.

e The source term in the Poisson equation thus is non-linear and non-local.
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Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.
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Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.

e Solve the local semi-linear Poisson problem.
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Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.
e Solve the local semi-linear Poisson problem.

e Establish compactness.
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Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.
e Solve the local semi-linear Poisson problem.
e Establish compactness.

e Pass to the limit to conclude.

Let ¢" € W»®[1, 1] such that ¢"(1) = ¢, and ¢"(r,) = 0. Solve for ¢"** :

=N (r%)(r) = g[¢"1(o(n)" T, r) — g[—¢"1(—p(nN" T, r),
") = ¢p ¢"TH(m) = 0.
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Existence of a solution: compactness

A key estimate to extract a converging subsequence is given by the following
Lemma (Functions g; and g. are finite)

Let f : R?> — R measurable and let p € [1,2). Then,

+00 (400 [w|?
sup  sup 5 [f(w, L)|dwdL < 2|f],1
—oo J—oo ‘WZ — LZ( 2

veR re(l,r,] % — %) _ 2,,!
r r
b

4
o 1l g wany
The non linear source term g[¢"](¢(r)" 1, r) — g[—¢"]1(—¢(r)" 1, r) is uniformly bounded in

L. We get that the sequence (¢") is bounded in W?®. This implies compactness by

Rellich-Kondrachov theorem. In particular ¢" converges (up to a sub seq) uniformly to some ¢.
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Existence of a solution: passing to the limit

How to pass to the limit in the quantity:
ply —el:=inflae [1,n|Vr=a (r) <e}.

It is in general not continuous with respect to v for the L™ topology. The problem is at strict
local maxima of .
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Existence of a solution: passing to the limit

How to pass to the limit in the quantity:
ply —el:=inflae [1,n|Vr=a (r) <e}.

It is in general not continuous with respect to v for the L™ topology. The problem is at strict
local maxima of .

1 — ol <6
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Existence of a solution: passing to the limit

How to pass to the limit in the quantity:
ply —el:=inflae [1,n|Vr=a (r) <e}.

It is in general not continuous with respect to v for the L™ topology. The problem is at strict
local maxima of .

Lemma (Convergence property for p)

Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,
Plen —el — plp —el.

Enough to pass to the limit since § only appears under an integral. The final ingredient to

conclude is an equicontinuity estimate of the non linear source term of the Poisson equation.
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Numerics




Gradient descent based iterative method: continuous setting

Iterative method:

n+1
- E( d(/; )(’) = [¢"(6(N" 1) — g[-¢"(—(N", 1)

o If ¢" is given, define G[¢"](v,r) = §; g[¢"]1(v', r)dv'.
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Gradient descent based iterative method: continuous setting

Iterative method:

n+1
N 7< X )(’) = [¢"(6(N" 1) — g[-¢"(—(N", 1)

dr dr
o If ¢" is given, define G[¢"](v,r) = §; g[¢"]1(v', r)dv'.
e Consider the energy functional:
R 7, )\2 d 2 R R
W) = [* S| Z 0] + G- (=(0),1) = Gl (0), e
1 r
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Gradient descent based iterative method: continuous setting

Iterative method:

n+1
N 7< X )(’) = [¢"(6(N" 1) — g[-¢"(—(N", 1)

dr dr
o If ¢" is given, define G[¢"](v,r) = §; g[¢"]1(v', r)dv'.
e Consider the energy functional:
R 7, )\2 d 2 R R
W) = [* S| Z 0] + G- (=(0),1) = Gl (0), e
1 r

e Compute iteratively:
¢" =" — pVI[B"](¢"), p > O.
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Gradient descent based iterative method: continuous setting

Iterative method:

n+1
N 7< X )(’) = [¢"(6(N" 1) — g[-¢"(—(N", 1)

dr dr
o If ¢" is given, define G[¢"](v,r) = §; g[¢"]1(v', r)dv'.
e Consider the energy functional:
R 7, /\2 d 2 R R
W) = [* S| Z 0] + G- (=(0),1) = Gl (0), e
1 r

e Compute iteratively:
¢" =" — pVI[B"](¢"), p > O.
The gradient VJ[¢"](¢") € V is the unique Riesz-representation of the Fréchet differential
of J at ¢" for a chosen inner product (- ; -):

(Vad[dp)(0h)i @) = dd[opl(dp) (@) Ve € Vy

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 25 / 42



Gradient descent based iterative method: continuous setting

Iterative method:

n+1
222 (P22 ) ) = D100 — el )

dr dr
o If ¢" is given, define G[¢"](v,r) = §; g[¢"]1(v', r)dv'.
e Consider the energy functional:
R 7, /\2 d 2 R R
W) = [* S| Z 0] + G- (=(0),1) = Gl (0), e
1 r

e Compute iteratively:
¢" =" — pVI[B"](¢"), p > O.
The gradient VJ[¢"](¢") € V is the unique Riesz-representation of the Fréchet differential
of J at ¢" for a chosen inner product (- ; -):

(Vad[6pl(0h); @) = dd[dpl(dp)(9) Ve € Vy.

e At convergence, it solves the non-linear and non-local Poisson problem.
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval [1, ry] of size h = (r, — 1)/(N + 1)
¢y € Vp := continuous and piecewise affine functions on [1, rp].
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval [1, ry] of size h = (r, — 1)/(N + 1)
¢y € Vp := continuous and piecewise affine functions on [1, rp].

e If ) € Vi, p[p — e] is computed by interpolation.
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval [1, ry] of size h = (r, — 1)/(N + 1)
¢y € Vp := continuous and piecewise affine functions on [1, rp].

e If ) € Vi, p[p — e] is computed by interpolation.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 26 / 42



Gradient descent based iterative method: discrete setting

Uniform mesh of the interval [1, ry] of size h = (r, — 1)/(N + 1)
¢y € Vp := continuous and piecewise affine functions on [1, rp].

e If ) € Vi, p[p — e] is computed by interpolation.

e The indicator 1 i

@

A B regularized because oscillations may appear if high order
w +r—2<2uL[w]

numerical integration is used.
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Radial solutions: the 1D sheath problem

nj > ne

nj~ ne

bulk plasma

Q00
00
@0 o
© 0o

S
i)

The one dimensional sheath problem is a classic of the plasma physics L We have done a
mathematical analysis to validate the code. Boundary conditions are in the form:

£ (ve,vo) = &7 (V1) ® dyy—0, £ (Vr, Vo) = &2 (V) ® Suy=0,

with
2 (vr—up)? n?
2

b v b
g (vr) = e y Ui =—2.0 g (vr) =
(vr) or (vr) ors

NEY

e

1K-U Riemann, The Bohm criterion and Sheath formation, Journal of Physics D: Applied Physics,
1991
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The one dimensional sheath problem is a classic of the plasma physics L We have done a
mathematical analysis to validate the code. Boundary conditions are in the form:
b b b b
£ (v ve) = & (V) @ dyg=0,  Fo (v, vo) = & (V) @ dug=0,
with )
2 (vr—uj) b
Vv, Ay n
&) = —=e T T . u=-20 g(v)=

V2n Var

NEY

e

e 1y is fixed a priori to ensure nj(r,) = ne(rp).

e The Bohm condition gi@ gl (vi)v, 2dv, < 1 is verified.

Numerical parameters: r, = 3, A\ = 0.1, N = 200. The gradient algorithm is stopped when

b2, L} e <102
1K-U Riemann, The Bohm criterion and Sheath formation, Journal of Physics D: Applied Physics,
1991
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Radial solutions: boundary layer profile and positivity of the charge

&(r) for different values of ¢, my(r)-rng(r) for different values of ¢,
' " 9p=06 —x
Qp=-1.4 —o—
Pp=-3.0 =
Pp=-0.6 — %
Pp=-1.4 —o—
$p=-3.0 =
15 2 25 3 15 2 25 3

Figure 4: Radial case with satisfied Bohm condition: potential ¢(r) (left) and density
difference rn;(r) — rne(r) (right) for ¢, varying from —0.6 to —3.
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Radial solutions: exponential decay

-¢(r) for different values of ¢p, log scale

rny(r)-rng(r) for

different values of ¢y, log scale

1107,

1%104
1105}
1*10°6.

1 1‘.1 1‘.2 1‘.3 1‘.4 1‘.5 1‘.6 1‘.7 1‘.8 1‘.9 2
r

Figure 5: Radial case with satisfied Bohm condition: potential ¢(r) (left) and density
difference rn;(r) — rne(r) (right) for ¢, varying from —0.6 to —3 in semi-log scale.

Mehdi Badsi

A kinetic model of plasma-probe interaction: theory and numerics 29 / 42



Radial solutions: the probe characteristic (I-V curve)

Total current density at the probe (ji-je)(r=1 ,q>p)
250

200
150 !

satisfied Bohm case —-—-

100 /s’

Pp

Figure 6: Radial case: total current density at the probe (j; — je)(r = 1,¢p) as a
function of the probe potential.

The radial current is a monotone increasing function of ¢,.
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Two dimensional solutions : perturbation of the radial setting

It is a prospective test case. This is motivated by the work of Laframbroise 3 Boundary conditions

are in the form:

2 2
1 _r n, Y
2 (v, ve) = \/E T @Mr1(vo), F(vve) = \/2% 2 @ Mt (ve)
where
2
M (ve) ! ei% T>0
Vo) = — , .
’ VorT

e 1 is fixed a priori to ensure ni(r,) = ne(rp).

e Two cases are simulated : T = 0.1 and T = 0.05.

Numerical parameters: r, = 3, A\ = 0.1, N = 200. The gradient algorithm is stopped when

IV (671 (Ph) o0 < 107

2Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian

plasmas, 1996.
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Two dimensional solutions: potential and density

&(r) for pp=-3 and different values of T m(r)-me(r) for ¢p=-3 and different values of T

Figure 7: Maxwellian case: potential ¢(r) (left) and density difference rn;(r) — rne(r)
(right) for ¢p = —3 and two values of T: 0.05 and 0.1.

There seems to be a loss of monotony in the potential. It may yield the
existence of unpopulated orbits in the phase space. The potential does not
seem to connect smoothly with the plasma core r > ry.
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Two dimensional solutions: ionic and electronic density

my(r) for ¢,=-3 and different values of T me(r) for ¢p=-3 and different values of T
1.6 1.6
14 14r
1.2+
1.2 .l
1 0.8+
0.6

T=5.102 — % T=5.102 — % - |
T=1.10" —o— T=1.10" —o—

1 15 2 25 3 1 15 2 25 3
r r

Figure 8: Maxwellian case: potential ¢(r) (left) and density difference rn;(r) — rne(r)
(right) for ¢p = —3 and two values of T: 0.05 and 0.1.

There is a clear loss of monotony in the ionic and electronic densities. It seems
that unpopulated orbits do exist: in the range r € [1.7,2.7] for the ions and in
the range r € [1.5,2.0] for the electrons.

Mehdi Badsi A kinetic model of plasma-probe interaction: theory and numerics 33 /42



Two dimensional solutions: ionic phase space

lonic phase space: (r,v., L =0)

ionic distribution f(r,v;) for vg=0, T=5.102 ionic distribution fi(r,v;) for vg=0, T=1.10"1

Figure 9: Maxwellian case: ionic distribution function fi(r, v;) for T = 0.05 (left),
T = 0.1 (right).
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Two dimensional solutions: ionic phase space

lonic phase space: (r, v, L # 0)

ionic distribution fi(r,v;) for vg=0.64, T=5.102 ionic distribution fi(r,v;) for vg=0.91, T=1 RO

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Figure 10: Maxwellian case: ionic distribution function f;(r, v,) for T = 0.05 (left),
T = 0.1 (right)

The effective potential is Ur(r) = +¢(r) + 5.
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Two dimensional solutions: electronic phase space

Electronic phase space: (r,v,, L = 0)

electronic distribution fe(r,v;) for vg=0, T=5.102 electronic distribution fe(r,v;) for vg=0, T=1.10"
07 045
06 04
035
05 03
04 v, 0.25 v
03 r 0.2 r
02 015
01
01

Figure 11: Maxwellian case: ionic distribution function fe(r, v,) for T = 0.05 (left),
T = 0.1 (right).
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Two dimensional solutions: electronic phase space

Electronic phase space: (r, v, L # 0)

electronic distribution fe(r,v;) for ve=0.64, T=5.102 electronic distribution fe(r,v;) for vg=0.91, T=1 .10

0.01

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0008
0007
0006
0005
Ve 0004
0003
0002
0001

Figure 12: Maxwellian case: ionic distribution function fe(r,v,) for T = 0.05 (left),
T = 0.1 (right), and three increasing values of vy from top to bottom.

The effective potential is Up(r) = —¢(r) + 5.
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Two dimensional solutions: the probe characteristic (I-V curve)

Total current density at the probe (ji-je)(=1,9p)

O =2 N W dH o o N

4 35 3 25 =2 45
Pp

Figure 13: Maxwellian case: total current density at the probe (jj —je)(r = 1,¢p) as a
function of the probe potential.

Still seems to be monotone for the range of parameter we used. Not proven
and not clear !
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Two dimensional solutions : ionic trajectories

®(x,y) and ion trajectory for v(t=0)=-0.5, vg(t=0)=0.75 $(x,y) and ion trajectory for v/(t=0)=-0.65, vg(t=0)=0.79
0 0 — — 3
05 05 r 2

B -1 1

15 y 15 0y

-2 2 -1

25 25 F {2

3 3 : ]

3 -2-1 01 2 3
x x

Figure 14: Maxwellian case: ¢ and ionic trajectories.
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Two dimensional solutions : electronic trajectories

®(x,y) and electron trajectory for v(t=0)=-3, vg(t=0)=0.5 ®(x,y) and electron trajectory for v(t=0)=-1, vg(t=0)=0.5

0 0 — —— 3
05 05 r 2
El El 1
15 y -15 0 y
-2 2 -1
25 25 F 12
3 3 L P Y
3 -2-1 01 2 3
X X

Figure 15: Maxwellian case: ¢ and electronic trajectories.
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Conclusion




Conclusion

e We proved the existence of solutions for a kinetic model of plasma-probe interaction.

3Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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Conclusion

e We proved the existence of solutions for a kinetic model of plasma-probe interaction.

o We obtained qualitative description and quantitative estimates of the solutions in the radial
setting.

o We proposed a numerical method to compute the solutions which is able to capture
unpopulated orbits.

e Comparison with the results of Laframboise > needs more numerical investigation.

e Dissemination:

e "Existence of solutions for a bi species kinetic model of a cylindrical Langmuir probe,
M.Badsi and L. Godard-Cadillac , in Communications in Mathematical Sciences, 2022"

e "Variational radial solutions and numerical simulations for a kinetic model of a
cylindrical Langmuir probe, A. Crestteto, M.Badsi and L. Godard-Cadillac, preprint
HAL, 2022."

3Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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Thank you for paying attention.
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