
1/33

Quasi-explicit, unconditionally stable,

Discontinuous Galerkin solvers for conservation

laws.

Pierre Gerhard, Philippe Helluy, Victor Michel-Dansac

Université de Strasbourg, IRMA CNRS, Inria Tonus

April 11 2022

2/33

Contents

Kinetic algorithm

Unconditionally stable Discontinous Galerkin

Numerical results

3/33

Kinetic algorithm

4/33

Conservation laws

System of m conservation laws in dimension d

@tW +
dX

i=1

@iQ
i (W) = S(W),

I Unknown: W (X , t) 2 Rm, space variable: X = (x1 . . . xd),
time variable: t.

I @i =
@
@xi

, @t = @
@t . Source term: S(W) = 0.

I Hyperbolicity: let N 2 Rd be an arbitrary space direction. The
flux

Q(W) · N =
dX

i=1

NiQ
i (W)

is supposed to be hyperbolic, i.e. the jacobian of the flux
dWQ(W) · N is diagonalizable with real eigenvalues.

5/33

Kinetic representation

We consider a set of d + 1 (or more) kinetic velocities Vk ,
k = 0 . . . d , associated to vectorial kinetic functions Fk(W) 2 Rm.
The macroscopic data are related to the kinetic data by

W =
X

k

Fk .

We also define “Maxwellian” equilibrium functions Mk(W) 2 Rm

such that
W =

X

k

Mk(W).

The kinetic BGK representation is given by transport equations
with relaxation source terms [3, 1]

@tFk + Vk ·rXFk =
1
⌧
(Mk(W)� Fk) .

6/33

Kinetic representation

When the relaxation time ⌧ ! 0+, the kinetic model is formally
equivalent to the initial system of conservation laws if

W =
X

k

Mk(W),
X

k

V i
kMk(W) = Q i (W), i = 1, . . . , d .

I Linear system of size m(d + 1)⇥m(d + 1) for finding the
Maxwellian. One expects a unique solution.

I It is possible to generalize to conservation laws with a source
term @tW +

Pd
i=1 @iQ

i (W) = S(W) 6= 0.
I In practice it is difficult to solve directly the BGK system. A

splitting is preferable.

7/33

Kinetic algorithm

1. Start with W (·, 0). Construct kinetic vectors Fk(·, 0) such that
W =

P
k Fk (not unique);

2. solve the free transport equations @tFk + V i
k · @iFk = 0 for a

duration of �t. This gives

Fk(X ,�t�) = Fk(X ��tVk , 0);

3. define
W (·,�t) =

X

k

Fk(·,�t�);

4. apply a relaxation

Fk(·,�t+) = !Mk(W (·,�t)) + (1� !)Fk(·,�t�).

Interesting cases: ! = 1, ! = 2, ! is a matrix. CFL-less [4, 7].

8/33

Flux error representation

During the computations, one expects that
P

k V
i
kFk ' Q i (W), we

thus introduce the approximated flux Z , and the flux error Y

Z i =
X

k

V i
kFk , Y i = Z i � Q i (W).

The kinetic algorithm is then a functional operator M(�t) that
maps (W (·, 0),Y i (·, 0)) to (W (·,�t),Y i (·,�t+)).

1. The operator M is made of (linear) shift operations and
(non-linear) local relaxations.

2. In the (W ,Y i) variables, when ! = 2, the relaxation operation
simply reads

Y i (·,�t+) = �Y i (·,�t�).

This induces fast oscillations of the flux error. For the analysis
it is better to replace M by M �M.

9/33

Equivalent equation

In principle it is now easy, while tedious, to compute the equivalent
equation of the kinetic algorithm: simply compute a Taylor
expansion of

M(�t/2)�M(��t/2)
�t

with respect to �t up to order O(�t2).
I The term X ��tVk in the shift operation generates partial

derivatives in space.
I Because of symmetries, when ! = 2, the even order terms

vanish.
I And finally, the relaxation introduces non linearities. We end

up with a system of non-linear conservation laws of first order
in (W ,Y i).

10/33

One-dimensional case

We consider the case d = 1, we have d + 1 = 2 kinetic velocities.
We take V0 = ��, V1 = �, W = F0 + F1. The equivalent equation
for ! = 2 at order O(�t2) is

@tW + @xQ(W) = 0,

(of course) and
@tY � dWQ(W)@xY = 0.

I We observe that the system is hyperbolic and that the waves
for W and Y move in opposite directions.

I No assumption of smallness of Y !
I It is necessary to analyze the third order terms to find the

sub-characteristic stability condition

� � max
1im

|�i (W)| ,

where �i (W) are the eigenvalues of dWQ(W).

11/33

Two-dimensional case

We consider the case d = 2, we have d + 1 = 3 kinetic velocities.
We take

Vk = �

✓
cos 2k⇡

3
sin 2k⇡

3

◆

The equivalent equation on W for ! = 2 at order O(�t2) is

@tW + @1Q
1(W) + @2Q

2(W) = 0,

(of course). Setting Ai (W) = dWQ i (W), the equation for Y is

@t

✓
Y1
Y2

◆
+

✓
�
2 I � A1(W) 0
�A2(W) ��

2

◆
@1

✓
Y1
Y2

◆
+

✓
0 ��

2 I � A1(W)
��

2 �A2(W)

◆
@2

✓
Y1
Y2

◆
= O(�t2),

We can prove that the equivalent system is symmetrizable, and
thus hyperbolic, if � is large enough (sub-characteristic condition).
Entropy analysis [3, 5].

12/33

Unconditionally stable Discontinous Galerkin

13/33

Discontinuous Galerkin (DG) solver

The main task is to solve a single transport equation

@t f + V ·rf = 0

in a domain ⌦ with a complex geometry. The characteristic method
is not necessarily a good idea (problems with stability, conservation,
boundaries). Let’s do DG [8].
I Unstructured mesh of ⌦ made of tetrahedral cells.
I The transported function f is approximated in cell L by a

linear expansion on basis functions

f (x , n�t) ' f nL (x) =
X

j

f nL,j
L
j (x), x 2 L.

I The unknowns are the coefficients f nL,j of the linear expansion.

14/33

Implicit DG

Implicit DG approximation scheme for going from time step n � 1
to time step n: for all cell L and 8i ,
Z

L

f nL � f n�1
L

�t
 L
i �

Z

L
V ·r L

i f
n
L +

Z

@L

�
V · N+f nL + V · N�f nR

�
 L
i = 0.

I R denotes the neighbor cells along @L.
I V · N + = max(V · N, 0), V · N � = min(V · N, 0). We thus

use an upwind numerical flux.
I N is the unit normal vector on @L oriented from L to R .

15/33

Downwind algorithm

The scheme seems to be implicit, but it is actually explicit [2].

I The solution can be explicitly computed by following a
topological ordering of a Direct Acyclic Graph (DAG), e.g. 3,
7, 0, 15, 1, etc.

I In addition there is parallelism: (3,7) can be computed in
parallel, then (0,15,1) can be computed in parallel, etc.

I Low storage: the solution can be replaced in memory during
the computations.

16/33

Numerical results

17/33

Rust implementation

We have implemented the downwind algorithm in Rust:
I Recent programming language (2010) oriented towards

concision, speed and security.
I Most common bugs are avoided at compile time: memory

leaks and segfaults, uninitialized data, race conditions.
I Automatic parallelization tools: if the sequential code works,

the parallel version is guaranteed to be correct.
I Fast. More details in [6].

18/33

Numerical results

I Maxwell’s equation: W = (ET ,HT)T , with electric field
E 2 R3 and magnetic field H 2 R3.

I Maxwell flux:

Q(W) · N =

✓
�N ⇥ H
N ⇥ E

◆
, @tW +r · Q(W) = 0.

.
I Unstructured mesh of the unit cube made with large and small

cells

19/33

Numerical results

I We compute a plane wave on the above mesh.
I We check second order accuracy and the CFL-less feature

20/33

Antenna simulation

I Unstructured mesh of the unit cube made of large and small
cells. A small electric wire at the middle of the mesh.

I Resolution of the Maxwell equations with a conductivity source
term S(W) = (�E , 0). Plane wave pulse.

21/33

FDTD comparison, � = 3

I Comparison with an FDTD solver. Hx and Hy on the line
y = z = 1/2 when the pulse reaches the wire.

I Computation time: FDTD 20 hours: (uniform fine mesh),
Kinetic DG: 70 s.

22/33

FDTD comparison, � = +1

The source term is solved in the relaxation step. It amounts to
perform E �E , before relaxing to the Maxwellian state. It seems
to work, even for perfect conductor.

23/33

3D multiphase flow

Fluid of density ⇢, velocity U, pressure p. Color function �: � = 0 in the
liquid and � = 1 in the gas.

W =

0

@
⇢
⇢U
⇢'

1

A , Q(W)·N =

0

@
⇢U · N

⇢(U · N)U + pN
⇢�U · N

1

A , S(W) =

0

BBBB@

0
0
0
�⇢g

0

1

CCCCA

The pressure is a function of ⇢ and �, p = ⇡(⇢,�).

@tW +r · Q(W) = S(W).

24/33

3D multiphase flow

Rayleigh-Taylor instability. Two immiscible fluids with gravity. CFL=10
on the symmetry axis.

25/33

Better parallelism ?

I The downwind algorithm is parallelized with a work stealing
thread based algorithm.The parallel scaling is good for a few
threads.

I In order to increase it we also applied a subdomain strategy
with a coupling between the subdomains.

26/33

Subdomain decomposition

Resolution of the transport equation with initial data in ⌦⇥ [0,�t]:

@t f + V ·rf = 0, f (X , 0) = f 0(X).

Decomposition of ⌦ into subdomains ⌦i (for simplicity, we assume
that ⌦ is a periodic domain or the whole space).
I We denote by fi the restriction of f to subdomain ⌦i ,
I by Ni (X) the outward normal vector on @⌦i ,
I and by @⌦�

i the upwind part of the boundary of ⌦i :
@⌦�

i = {X 2 @⌦i ,Ni (X) · V < 0} .

27/33

Iterative algorithm

We set f 0
i (X , t) = f 0

i (X) and consider the iterative algorithm

@t f
p
i + V ·rf pi = 0, in ⌦i ,

f pi (X , 0) = f 0
i (X), X 2 ⌦i ,

f pi (X , t) = f p�1
j (X , t), X 2 @⌦�

i \ @⌦j .

Proposition: let L be the maximum diameter of the subdomains.
Under the condition

�t L

|V | ,

in the generic case, the above algorithm converges to the exact
solution in at most three iterations: f 3

i = fi .
Proof: by the characteristic method.

28/33

Aligned subdomains case

I First iteration: the boundary value is updated.
I Second iteration: the correct value is transported.

29/33

Generic case

I First iteration: the boundary value on @⌦�
2 is updated.

I Second iteration: the boundary value on @⌦�
3 is updated.

I Third iteration: the correct value is transported.

30/33

Subdomain stability condition

Numerical experiments indicate that the number of iterations is
also related to stability.

Left: subdomains, Middle: 2 iterations scheme, Right: 3 iterations
scheme

31/33

MPI scaling

The subdomain algorithm relaxes the computational tasks
dependency and allows to get a better parallel (strong) scaling of
the method:

MPI nodes Threads #CPU Time (s) Accel.
1 2 2 1314 1
1 8 8 346 0.95
1 16 16 209 0.79
1 32 32 132 0.62
1 64 64 106 0.39
2 32 64 75 0.55
4 16 64 59 0.70
8 8 64 57 0.72

128 2 256 24 0.43

32/33

Conclusion

The kinetic approach:
I Can handle arbitrary conservation laws.
I Construction of CFL-free explicit DG scheme on unstructured

meshes.
I Equivalent equation: useful theoretical tool (stability analysis,

boundary conditions, behavior of hidden variables).
I Good parallelization features, for both shared memory and

distributed memory computers.
Ongoing works: boundary conditions, other applications
(cavitation).

33/33

Bibliography I

[1] Denise Aregba-Driollet and Roberto Natalini.

Discrete kinetic schemes for multidimensional systems of conservation laws.

SIAM Journal on Numerical Analysis, 37(6):1973–2004, 2000.

[2] Jürgen Bey and Gabriel Wittum.

Downwind numbering: Robust multigrid for convection-diffusion problems.

Applied Numerical Mathematics, 23(1):177–192, 1997.

[3] François Bouchut.

Construction of BGK models with a family of kinetic entropies for a given system of conservation

laws.

Journal of Statistical Physics, 95(1-2):113–170, 1999.

[4] Yann Brenier.

Averaged multivalued solutions for scalar conservation laws.

SIAM journal on numerical analysis, 21(6):1013–1037, 1984.

[5] François Dubois.

Simulation of strong nonlinear waves with vectorial lattice boltzmann schemes.

International Journal of Modern Physics C, 25(12):1441014, 2014.

[6] Pierre Gerhard, Philippe Helluy, and Victor Michel-Dansac.

Unconditionally stable and parallel discontinuous galerkin solver.

Computers & Mathematics with Applications, 112:116–137, 2022.

[7] B. Perthame.

Boltzmann type schemes for gas dynamics and the entropy property.

SIAM Journal on Numerical Analysis, 27(6):1405–1421, 1990.

[8] Xing Shi, Jianzhong Lin, and Zhaosheng Yu.

Discontinuous galerkin spectral element lattice boltzmann method on triangular element.

International Journal for Numerical Methods in Fluids, 42(11):1249–1261, 2003.

	Kinetic algorithm
	Unconditionally stable Discontinous Galerkin
	Numerical results

