Quasi-explicit, unconditionally stable, Discontinuous Galerkin solvers for conservation laws.

Pierre Gerhard, Philippe Helluy, Victor Michel-Dansac

Université de Strasbourg, IRMA CNRS, Inria Tonus

April 11 2022

[Kinetic algorithm](#page-2-0)

[Unconditionally stable Discontinous Galerkin](#page-11-0)

[Numerical results](#page-15-0)

[Kinetic algorithm](#page-2-0)

Conservation laws

System of *m* conservation laws in dimension *d*

$$
\partial_t W + \sum_{i=1}^d \partial_i Q^i(W) = S(W),
$$

- Inknown: $W(X, t) \in \mathbb{R}^m$, space variable: $X = (x_1 \dots x_d)$, time variable: *t*.
- \blacktriangleright $\partial_i = \frac{\partial}{\partial x_i}, \ \partial_t = \frac{\partial}{\partial t}.$ Source term: $S(W) = 0.$
- **If** Hyperbolicity: let $N \in \mathbb{R}^d$ be an arbitrary space direction. The flux

$$
Q(W) \cdot N = \sum_{i=1}^d N_i Q^i(W)
$$

is supposed to be hyperbolic, i.e. the jacobian of the flux $d_W Q(W) \cdot N$ is diagonalizable with real eigenvalues.

Kinetic representation

We consider a set of $d + 1$ (or more) kinetic velocities V_k , $k = 0...d$, associated to **vectorial** kinetic functions $F_k(W) \in \mathbb{R}^m$. The macroscopic data are related to the kinetic data by

$$
W=\sum_k F_k.
$$

We also define "Maxwellian" equilibrium functions $M_k(W) \in \mathbb{R}^m$ such that

$$
W=\sum_k M_k(W).
$$

The kinetic BGK representation is given by transport equations with relaxation source terms [\[3,](#page-32-0) [1\]](#page-32-1)

$$
\partial_t F_k + V_k \cdot \nabla_X F_k = \frac{1}{\tau} \left(M_k(W) - F_k \right).
$$

Kinetic representation

When the relaxation time $\tau \rightarrow 0^+$, the kinetic model is formally equivalent to the initial system of conservation laws if

$$
W=\sum_k M_k(W), \quad \sum_k V_k^i M_k(W)=Q^i(W), \quad i=1,\ldots,d.
$$

- If Linear system of size $m(d+1) \times m(d+1)$ for finding the Maxwellian. One expects a unique solution.
- \blacktriangleright It is possible to generalize to conservation laws with a source term $\partial_t W + \sum_{i=1}^d \partial_i Q^i(W) = S(W) \neq 0$.
- In practice it is difficult to solve directly the BGK system. A splitting is preferable.

Kinetic algorithm

- 1. Start with $W(\cdot, 0)$. Construct kinetic vectors $F_k(\cdot, 0)$ such that $W = \sum_{k} F_{k}$ (not unique);
- 2. solve the free transport equations $\partial_t F_k + V^i_k \cdot \partial_i F_k = 0$ for a duration of Δt . This gives

$$
F_k(X, \Delta t^{-}) = F_k(X - \Delta t V_k, 0);
$$

3. define

$$
W(\cdot,\Delta t)=\sum_{k}F_{k}(\cdot,\Delta t^{-});
$$

4. apply a relaxation

$$
F_k(\cdot, \Delta t^+) = \omega M_k(W(\cdot, \Delta t)) + (1 - \omega) F_k(\cdot, \Delta t^-).
$$

Interesting cases: $\omega = 1$, $\omega = 2$, ω is a matrix. CFL-less [\[4,](#page-32-2) [7\]](#page-32-3).

Flux error representation

During the computations, one expects that $\sum_{k} V_{k}^{i} F_{k} \simeq Q^{i}(W)$, we thus introduce the approximated flux *Z*, and the flux error *Y*

$$
Z^i = \sum_k V_k^i F_k, \quad Y^i = Z^i - Q^i(W).
$$

The kinetic algorithm is then a functional operator $M(\Delta t)$ that maps $(W(\cdot, 0), Y^i(\cdot, 0))$ to $(W(\cdot, \Delta t), Y^i(\cdot, \Delta t^+))$.

- 1. The operator *M* is made of (linear) shift operations and (non-linear) local relaxations.
- 2. In the (W, Y^i) variables, when $\omega=$ 2, the relaxation operation simply reads

$$
Y^{i}(\cdot,\Delta t^{+})=-Y^{i}(\cdot,\Delta t^{-}).
$$

This induces fast oscillations of the flux error. For the analysis it is better to replace M by $M \circ M$.

Equivalent equation

In principle it is now easy, while tedious, to compute the equivalent equation of the kinetic algorithm: simply compute a Taylor expansion of

$$
\frac{\mathcal{M}(\Delta t/2)-\mathcal{M}(-\Delta t/2)}{\Delta t}
$$

with respect to Δt up to order $O(\Delta t^2)$.

- \triangleright The term $X \Delta t V_k$ in the shift operation generates partial derivatives in space.
- Because of symmetries, when $\omega = 2$, the even order terms vanish.
- \triangleright And finally, the relaxation introduces non linearities. We end up with a system of non-linear conservation laws of first order in (W, Y^i) .

One-dimensional case

We consider the case $d = 1$, we have $d + 1 = 2$ kinetic velocities. We take $V_0 = -\lambda$, $V_1 = \lambda$, $W = F_0 + F_1$. The equivalent equation for $\omega = 2$ at order $O(\Delta t^2)$ is

 $\partial_t W + \partial_x Q(W) = 0,$

(of course) and

$$
\partial_t Y - d_W Q(W) \partial_x Y = 0.
$$

- \triangleright We observe that the system is hyperbolic and that the waves for *W* and *Y* move in opposite directions.
- ▶ No assumption of smallness of Y!
- \blacktriangleright It is necessary to analyze the third order terms to find the sub-characteristic stability condition

$$
\lambda \geq \max_{1 \leq i \leq m} |\lambda_i(W)|,
$$

where $\lambda_i(W)$ are the eigenvalues of $d_W Q(W)$.

Two-dimensional case

We consider the case $d = 2$, we have $d + 1 = 3$ kinetic velocities. We take

$$
V_k = \lambda \left(\begin{array}{c} \cos \frac{2k\pi}{3} \\ \sin \frac{2k\pi}{3} \end{array} \right)
$$

The equivalent equation on *W* for $\omega = 2$ at order $O(\Delta t^2)$ is

$$
\partial_t W + \partial_1 Q^1(W) + \partial_2 Q^2(W) = 0,
$$

(of course). Setting $A^{i}(W) = d_{W}Q^{i}(W)$, the equation for Y is

$$
\partial_t \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} + \begin{pmatrix} \frac{\lambda}{2}I - A^1(W) & 0 \\ -A^2(W) & -\frac{\lambda}{2} \end{pmatrix} \partial_1 \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} + \\ \begin{pmatrix} 0 & -\frac{\lambda}{2}I - A^1(W) \\ -\frac{\lambda}{2} & -A^2(W) \end{pmatrix} \partial_2 \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = O(\Delta t^2),
$$

We can prove that the equivalent system is symmetrizable, and thus hyperbolic, if λ is large enough (sub-characteristic condition). Entropy analysis [\[3,](#page-32-0) [5\]](#page-32-4).

[Unconditionally stable Discontinous Galerkin](#page-11-0)

Discontinuous Galerkin (DG) solver

The main task is to solve a single transport equation

 $\partial_t f + V \cdot \nabla f = 0$

in a domain Ω with a complex geometry. The characteristic method is not necessarily a good idea (problems with stability, conservation, boundaries). Let's do DG [\[8\]](#page-32-5).

- I Unstructured mesh of Ω made of tetrahedral cells.
- ▶ The transported function *f* is approximated in cell *L* by a linear expansion on basis functions

$$
f(x, n\Delta t) \simeq f_L^n(x) = \sum_j f_{L,j}^n \psi_j^L(x), \quad x \in L.
$$

The unknowns are the coefficients $f_{L,j}^n$ of the linear expansion.

Implicit DG

Implicit DG approximation scheme for going from time step $n - 1$ to time step *n*: for all cell L and $\forall i$,

$$
\int_{L} \frac{f_L^n - f_L^{n-1}}{\Delta t} \psi_i^L - \int_{L} V \cdot \nabla \psi_i^L f_L^n + \int_{\partial L} \left(V \cdot N^+ f_L^n + V \cdot N^- f_R^n \right) \psi_i^L = 0.
$$

 \blacktriangleright *R* denotes the neighbor cells along ∂L .

- $V \cdot N^+$ = max($V \cdot N$, 0), $V \cdot N^-$ = min($V \cdot N$, 0). We thus use an upwind numerical flux.
- \triangleright *N* is the unit normal vector on ∂L oriented from *L* to *R*.

Downwind algorithm

The scheme seems to be implicit, but it is actually explicit [\[2\]](#page-32-6).

- \blacktriangleright The solution can be explicitly computed by following a topological ordering of a Direct Acyclic Graph (DAG), e.g. 3, 7, 0, 15, 1, etc.
- In addition there is parallelism: $(3,7)$ can be computed in parallel, then (0,15,1) can be computed in parallel, etc.
- \triangleright Low storage: the solution can be replaced in memory during the computations.

[Numerical results](#page-15-0)

Rust implementation

We have implemented the downwind algorithm in Rust:

- \triangleright Recent programming language (2010) oriented towards concision, speed and security.
- \triangleright Most common bugs are avoided at compile time: memory leaks and segfaults, uninitialized data, race conditions.
- \triangleright Automatic parallelization tools: if the sequential code works, the parallel version is guaranteed to be correct.
- \blacktriangleright Fast. More details in [\[6\]](#page-32-7).

Numerical results

.

- \blacktriangleright Maxwell's equation: $W = (E^T, H^T)^T$, with electric field $E \in \mathbb{R}^3$ and magnetic field $H \in \mathbb{R}^3$.
- \blacktriangleright Maxwell flux:

$$
Q(W) \cdot N = \left(\begin{array}{c} -N \times H \\ N \times E \end{array} \right), \quad \partial_t W + \nabla \cdot Q(W) = 0.
$$

 \triangleright Unstructured mesh of the unit cube made with large and small cells

Numerical results

- \triangleright We compute a plane wave on the above mesh.
- ▶ We check second order accuracy and the CFL-less feature

Antenna simulation

- \triangleright Unstructured mesh of the unit cube made of large and small cells. A small electric wire at the middle of the mesh.
- \triangleright Resolution of the Maxwell equations with a conductivity source term $S(W) = (\sigma E, 0)$. Plane wave pulse.

FDTD comparison, $\sigma = 3$

- **If** Comparison with an FDTD solver. H_x and H_y on the line $y = z = 1/2$ when the pulse reaches the wire.
- ▶ Computation time: FDTD 20 hours: (uniform fine mesh), Kinetic DG: 70 s.

FDTD comparison, $\sigma = +\infty$

The source term is solved in the relaxation step. It amounts to perform $E \leftarrow -E$, before relaxing to the Maxwellian state. It seems to work, even for perfect conductor.

3D multiphase flow

Fluid of density ρ , velocity U, pressure ρ . Color function ϕ : $\phi = 0$ in the liquid and $\phi = 1$ in the gas.

$$
W = \begin{pmatrix} \rho \\ \rho U \\ \rho \varphi \end{pmatrix}, \quad Q(W) \cdot N = \begin{pmatrix} \rho U \cdot N \\ \rho (U \cdot N) U + \rho N \\ \rho \varphi U \cdot N \end{pmatrix}, \quad S(W) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\rho g \\ 0 \end{pmatrix}
$$

The pressure is a function of ρ and ϕ , $p = \pi(\rho, \phi)$.

$$
\partial_t W + \nabla \cdot Q(W) = S(W).
$$

3D multiphase flow

Rayleigh-Taylor instability. Two immiscible fluids with gravity. CFL=10 on the symmetry axis.

Better parallelism ?

- \triangleright The downwind algorithm is parallelized with a work stealing thread based algorithm.The parallel scaling is good for a few threads.
- In order to increase it we also applied a subdomain strategy with a coupling between the subdomains.

Subdomain decomposition

Resolution of the transport equation with initial data in $\Omega \times [0, \Delta t]$:

$$
\partial_t f + V \cdot \nabla f = 0, \quad f(X,0) = f^0(X).
$$

Decomposition of Ω into subdomains Ω_i (for simplicity, we assume that Ω is a periodic domain or the whole space).

- \triangleright We denote by f_i the restriction of f to subdomain Ω_i ,
- \blacktriangleright by $N_i(X)$ the outward normal vector on $\partial\Omega_i$,
- **and by** $\partial \Omega_i^-$ **the upwind part of the boundary of** Ω_i **:** $\partial \Omega_i^- = \{ X \in \partial \Omega_i, N_i(X) \cdot V < 0 \}.$

Iterative algorithm

We set $f_i^0(X,t) = f_i^0(X)$ and consider the iterative algorithm

$$
\partial_t f_i^p + V \cdot \nabla f_i^p = 0, \text{ in } \Omega_i,
$$

\n
$$
f_i^p(X, 0) = f_i^0(X), \quad X \in \Omega_i,
$$

\n
$$
f_i^p(X, t) = f_j^{p-1}(X, t), \quad X \in \partial \Omega_i^- \cap \partial \Omega_j.
$$

Proposition: let *L* be the maximum diameter of the subdomains. Under the condition

$$
\Delta t \leq \frac{L}{|V|},
$$

in the generic case, the above algorithm converges to the exact solution in at most three iterations: $f_i^3 = f_i$. Proof: by the characteristic method.

Aligned subdomains case

 \blacktriangleright First iteration: the boundary value is updated.

 \triangleright Second iteration: the correct value is transported.

Generic case

- First iteration: the boundary value on $\partial \Omega_2^-$ is updated.
- Second iteration: the boundary value on $\partial\Omega_3^-$ is updated.
- \blacktriangleright Third iteration: the correct value is transported.

Subdomain stability condition

Numerical experiments indicate that the number of iterations is also related to stability.

Left: subdomains, Middle: 2 iterations scheme, Right: 3 iterations scheme

MPI scaling

The subdomain algorithm relaxes the computational tasks dependency and allows to get a better parallel (strong) scaling of the method:

Conclusion

The kinetic approach:

- \triangleright Can handle arbitrary conservation laws.
- ▶ Construction of CFL-free explicit DG scheme on unstructured meshes.
- \blacktriangleright Equivalent equation: useful theoretical tool (stability analysis, boundary conditions, behavior of hidden variables).
- \triangleright Good parallelization features, for both shared memory and distributed memory computers.

Ongoing works: boundary conditions, other applications (cavitation).

Bibliography I

[1] Denise Aregba-Driollet and Roberto Natalini.

Discrete kinetic schemes for multidimensional systems of conservation laws. *SIAM Journal on Numerical Analysis*, 37(6):1973–2004, 2000.

[2] Jürgen Bey and Gabriel Wittum.

Downwind numbering: Robust multigrid for convection-diffusion problems. *Applied Numerical Mathematics*, 23(1):177–192, 1997.

[3] Francois Bouchut.

Construction of BGK models with a family of kinetic entropies for a given system of conservation laws.

Journal of Statistical Physics, 95(1-2):113–170, 1999.

[4] Yann Brenier.

Averaged multivalued solutions for scalar conservation laws. *SIAM journal on numerical analysis*, 21(6):1013–1037, 1984.

[5] François Dubois.

Simulation of strong nonlinear waves with vectorial lattice boltzmann schemes. *International Journal of Modern Physics C*, 25(12):1441014, 2014.

- [6] Pierre Gerhard, Philippe Helluy, and Victor Michel-Dansac. Unconditionally stable and parallel discontinuous galerkin solver. *Computers & Mathematics with Applications*, 112:116–137, 2022.
- [7] B. Perthame. Boltzmann type schemes for gas dynamics and the entropy property. *SIAM Journal on Numerical Analysis*, 27(6):1405–1421, 1990.
- [8] Xing Shi, Jianzhong Lin, and Zhaosheng Yu. Discontinuous galerkin spectral element lattice boltzmann method on triangular element. *International Journal for Numerical Methods in Fluids*, 42(11):1249–1261, 2003.