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Kinetic algorithm



Conservation laws

System of m conservation laws in dimension d
d .
W+ 0:Q/(W) = S(W),
i=1

» Unknown: W(X,t) € R"™, space variable: X = (xi...xq),
time variable: t.

> 0 = a%,-' O = %. Source term: S(W) = 0.

» Hyperbolicity: let N € RY be an arbitrary space direction. The
flux

d
QW) -N =Y NQ' (W)
i=1

is supposed to be hyperbolic, i.e. the jacobian of the flux
dw Q(W) - N is diagonalizable with real eigenvalues.



Kinetic representation

We consider a set of d + 1 (or more) kinetic velocities Vj,
k =0...d, associated to vectorial kinetic functions Fx(W) € R™.
The macroscopic data are related to the kinetic data by

W:ZFk.
k

We also define “Maxwellian” equilibrium functions My (W) € R™
such that

W=>" M (W).
k

The kinetic BGK representation is given by transport equations
with relaxation source terms [3, 1]

1
OtFi + Vi - VxFy = - (M (W) — Fy).



Kinetic representation

When the relaxation time 7 — 07, the kinetic model is formally
equivalent to the initial system of conservation laws if

W=> M(W), Y ViM(W)=Q W), i=1,...d
k k

» Linear system of size m(d + 1) x m(d + 1) for finding the
Maxwellian. One expects a unique solution.

> |t is possible to generalize to conservation laws with a source
term 9; W + 329, 9;Q'(W) = S(W) # 0.

» In practice it is difficult to solve directly the BGK system. A
splitting is preferable.



Kinetic algorithm

1. Start with W(-,0). Construct kinetic vectors Fi(+,0) such that
W = 3", Fi (not unique);

2. solve the free transport equations 0; Fy + V,i -0;F =0 for a
duration of At. This gives

Fk(X,At_) = Fk(X — Ath,O);

3. define
W(-, At) = E Fe(-, At™);
k

4. apply a relaxation
Fi(- AtT) = wM(W(:, At)) + (1 — w)Fi(:, At7).

Interesting cases: w =1, w = 2, w is a matrix. CFL-less [4, 7].



Flux error representation

During the computations, one expects that Y, V/Fx ~ Q'(W), we
thus introduce the approximated flux Z, and the flux error Y

Z'=>"ViF, Y =Z-Q(w)
k

The kinetic algorithm is then a functional operator M(At) that
maps (W(70)7 Y’(,O)) to (W('>At)7 YI('>At+))'
1. The operator M is made of (linear) shift operations and
(non-linear) local relaxations.

2. In the (W, Y') variables, when w = 2, the relaxation operation
simply reads ' '
Y'(,AtT) = =Y'(, At7).
This induces fast oscillations of the flux error. For the analysis
it is better to replace M by M o M.



Equivalent equation

In principle it is now easy, while tedious, to compute the equivalent
equation of the kinetic algorithm: simply compute a Taylor
expansion of
M(At/2) — M(—At/2)
At
with respect to At up to order O(At?).

» The term X — AtV in the shift operation generates partial
derivatives in space.

» Because of symmetries, when w = 2, the even order terms
vanish.

» And finally, the relaxation introduces non linearities. We end

up with a system of non-linear conservation laws of first order
in (W, Y.



One-dimensional case

We consider the case d = 1, we have d + 1 = 2 kinetic velocities.
We take Vo = =\, Vi = A\, W = Fg + F1. The equivalent equation
for w = 2 at order O(At?) is

B W + 0, Q(W) = 0,

(of course) and
OtY —dwQ(W)osY = 0.

» \We observe that the system is hyperbolic and that the waves
for W and Y move in opposite directions.
» No assumption of smallness of Y |

> |t is necessary to analyze the third order terms to find the
sub-characteristic stability condition

A> max [M(W),

1<i<m

where \;(W) are the eigenvalues of dy Q(W).



Two-dimensional case
We consider the case d = 2, we have d + 1 = 3 kinetic velocities.

We take o
cos 5%
Vi=\ Y

k < sin —2§“ )

The equivalent equation on W for w = 2 at order O(At?) is
oW + 01 QHW) + 0, Q*(W) = 0,

(of course). Setting A/(W) = dw Q'(W), the equation for Y is
Y, 2 —AY (W) 0 Y1
() (i ) ()
0 —31—AY(W) i\ 2
(5 ey ) () =0

We can prove that the equivalent system is symmetrizable, and
thus hyperbolic, if A is large enough (sub-characteristic condition).
Entropy analysis [3, 5].



Unconditionally stable Discontinous Galerkin



Discontinuous Galerkin (DG) solver

The main task is to solve a single transport equation
Of +V-VFf=0

in a domain Q with a complex geometry. The characteristic method
is not necessarily a good idea (problems with stability, conservation,
boundaries). Let's do DG [8].

» Unstructured mesh of Q made of tetrahedral cells.

» The transported function f is approximated in cell L by a
linear expansion on basis functions

f(x, nAt) Z flf(x), x€L

» The unknowns are the coefficients £ of the linear expansion.



Implicit DG

Implicit DG approximation scheme for going from time step n — 1
to time step n: for all cell L and Vi,

fn__fn ' Len +rn —rn L
L oL

» R denotes the neighbor cells along L.

> V-N* =max(V-N,0), V- N~ =min(V - N,0). We thus
use an upwind numerical flux.

» N is the unit normal vector on L oriented from L to R.

OLNOR

By



Downwind algorithm

The scheme seems to be implicit,

but it is actually explicit [2].
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» The solution can be explicitly computed by following a
topological ordering of a Direct Acyclic Graph (DAG), e.g. 3,

7,0, 15, 1, etc.

» In addition there is parallelism: (3,7) can be computed in
parallel, then (0,15,1) can be computed in parallel, etc.

> Low storage: the solution can be replaced in memory during

the computations.



Numerical results



Rust implementation
We have implemented the downwind algorithm in Rust:

» Recent programming language (2010) oriented towards
concision, speed and security.

» Most common bugs are avoided at compile time: memory
leaks and segfaults, uninitialized data, race conditions.

» Automatic parallelization tools: if the sequential code works,
the parallel version is guaranteed to be correct.

» Fast. More details in [6].

Error e, CPU (s)

Method CFL 3 At v=2 v=>5 1 thread 24 threads
RK3DG 0.37 0.00009 0.00070 0.01238 4.607.95 T85.28
D3p4P 0.37 0.00009 0.00103 0.01467 1.524.45 234.48
RK3DG 0.93 0.00023 0.00070 0.01238 2.189.76 384.79
D34P 0.93 0.00023 0.00103 0.01467 613.44 90.84
RK3DG 1.85 0.00046 0.00070 0.01238 1.121.96 212.60
D3g4P 185 0.00046 000103 001467 30441 1514
D3Q4P 3.70 0.00091 0.00103 0.01468 153.09 22.40
D3Q4P 9.25 0.00228 0.00104 0.01479 61.60 8.96
D3p4P 18.50 0.00456 0.00115 0.01619 30.76 4.53
D3p4P 37.00 0.00912 0.00210 0.02092 15.34 2.46
D34P 92.50 0.02281 0.01107 0.16589 6.17 0.92

D3Q4P 185.00 0.04562 0.04509 0.40344 3.10 0.48




Numerical results

» Maxwell's equation: W = (ET,HT)T, with electric field
E € R3 and magnetic field H € R3.

> Maxwell flux:

—Nx H

Q(W)'N:( N x E

), W + V- Q(W) =0.

» Unstructured mesh of the unit cube made with large and small
cells




Numerical results

» We compute a plane wave on the above mesh.
» We check second order accuracy and the CFL-less feature
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Antenna simulation

» Unstructured mesh of the unit cube made of large and small
cells. A small electric wire at the middle of the mesh.

» Resolution of the Maxwell equations with a conductivity source
term S(W) = (¢E,0). Plane wave pulse.
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FDTD comparison, 0 =3

» Comparison with an FDTD solver. Hx and H, on the line
y = z = 1/2 when the pulse reaches the wire.

» Computation time: FDTD 20 hours: (uniform fine mesh),
Kinetic DG: 70 s.
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FDTD comparison, ¢ = 400

The source term is solved in the relaxation step. It amounts to
perform E <— —E, before relaxing to the Maxwellian state. It seems
to work, even for perfect conductor.

--- TEMSI PEC (FDTD) --- TEMSI PEC (FDTD)
.10~3 |— KOUGLOFV (CFL =7) .10~2 |— KOUGLOFV (CFL =7)
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3D multiphase flow

Fluid of density p, velocity U, pressure p. Color function ¢: ¢ = 0 in the

liquid and ¢ = 1 in the gas.

p pU-N
W:(pU), Q(W)'N:(p(U-N)U—kpN), S(W) =
pp poU - N

The pressure is a function of p and ¢, p = 7(p, ¢).
oW 4+ V- QW) = S(W).

ow O o o



3D multiphase flow

Rayleigh-Taylor instability. Two immiscible fluids with gravity. CFL=10
on the symmetry axis.




Better parallelism 7

» The downwind algorithm is parallelized with a work stealing
thread based algorithm.The parallel scaling is good for a few
threads.

» In order to increase it we also applied a subdomain strategy
with a coupling between the subdomains.



Subdomain decomposition

Resolution of the transport equation with initial data in Q x [0, At]:
Hf+V-VF=0, f(X,0)=rfX).

Decomposition of € into subdomains Q; (for simplicity, we assume
that Q is a periodic domain or the whole space).

> We denote by f; the restriction of f to subdomain Q;,
» by N;(X) the outward normal vector on 0%;,

» and by 02 the upwind part of the boundary of ;:
0Q; ={X € 0Q;, N;(X) -V <0}.



Iterative algorithm

We set f2(X, t) = f2(X) and consider the iterative algorithm

OfP +V-VIP =0, inQ,
fP(X,0) = f2(X), XeQ,
FPX. 1) =X, 1), X €09 NoQ;.

Proposition: let L be the maximum diameter of the subdomains.
Under the condition
Ar< £
— v

in the generic case, the above algorithm converges to the exact
solution in at most three iterations: 3 = f;.
Proof: by the characteristic method.



Aligned subdomains case

i
first iteration

transported value second iteration

/ s

V At

Generic cell size

> First iteration: the boundary value is updated.

> Second iteration: the correct value is transported.



Generic case

Q, Q

first iteration

second iteration | third iteration

transported value

Generic cell size

» First iteration: the boundary value on 092, is updated.
» Second iteration: the boundary value on 03 is updated.
» Third iteration: the correct value is transported.



Subdomain stability condition

Numerical experiments indicate that the number of iterations is
also related to stability.

Left: subdomains, Middle: 2 iterations scheme, Right: 3 iterations
scheme



MPI scaling

The subdomain algorithm relaxes the computational tasks
dependency and allows to get a better parallel (strong) scaling of
the method:

’ MPI nodes ‘ Threads ‘ #CPU ‘ Time (s) ‘ Accel. ‘

1 2 2 1314 1
1 8 8 346 0.95
1 16 16 209 0.79
1 32 32 132 0.62
1 64 64 106 0.39
2 32 64 75 0.55
4 16 64 59 0.70
128 2 256 24 0.43




Conclusion

The kinetic approach:
» Can handle arbitrary conservation laws.
» Construction of CFL-free explicit DG scheme on unstructured
meshes.
» Equivalent equation: useful theoretical tool (stability analysis,
boundary conditions, behavior of hidden variables).
» Good parallelization features, for both shared memory and
distributed memory computers.
Ongoing works: boundary conditions, other applications
(cavitation).
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