New perpective on time stepping techniques: Beyond strong stability.

J.-L. Guermond

Department of Mathematics Texas A&M University

Séminaire d'analyse numérique CEA DAM Ile de France, Bruyères le Châtel, June 7th, 2022

A D > A P > A D > A D >

Collaborators and acknowledgments

This work done in collaboration with:

 Alexandre Ern (École Nationale des Ponts & Chaussées, Paris, France)

Other collaborators

- Bennett Clayton (TAMU, TX)
- Martin Kronbichler (Uppsala, Sweden)
- Matthias Maier (TAMU, TX)
- Murtazo Nazarov (Uppsala, Sweden)
- B. Popov (TAMU, TX)
- Laura Saavedra (Universidad Politécnica de Madrid)
- Madison Sheridan (TAMU, TX)
- Ignacio Tomas (SANDIA, NM)
- Eric Tovar (LANL, NM)

Support:

Outline

Introduction

nvariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

Introduction

э

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

イロト イヨト イヨト イヨト

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

▶ *D* open polyhedral domain in \mathbb{R}^d .

Cauchy problem

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) &= \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- ▶ *D* open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$

æ

Cauchy problem

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) &= \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

3

- ▶ *D* open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- ▶ *D* open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.

ヘロト ヘ戸ト ヘヨト ヘヨト

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- ▶ *D* open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.
- ▶ $\mathbf{S} \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, source.

ヘロト ヘ戸ト ヘヨト ヘヨト

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

▶ *D* open polyhedral domain in \mathbb{R}^d .

- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.
- ▶ $\mathbf{S} \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, source.
- u₀, admissible initial data.

ヘロト ヘ戸ト ヘヨト ヘヨト

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

• D open polyhedral domain in \mathbb{R}^d .

- ▶ Field **u** takes values in \mathbb{R}^m ; that is, **u** : $D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.
- ▶ $\mathbf{S} \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, source.
- u₀, admissible initial data.
- ▶ Periodic BCs or **u**₀ has compact support (to simplify BCs)

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Example 0: Scalar advection-diffusion-reaction

Find u so that $\partial_t u + \nabla \cdot (\mathbf{f}(\mathbf{x}, u) - \kappa(u) \nabla u) - \mathbf{S}(u) = 0, \quad u(\cdot, 0) = u_0(\cdot),$

Example 0: Scalar advection-diffusion-reaction

Find u so that $\partial_t u + \nabla \cdot (\mathbf{f}(\mathbf{x}, u) - \kappa(u) \nabla u) - \mathbf{S}(u) = 0, \quad u(\cdot, 0) = u_0(\cdot),$

► For instance $\mathbf{S}(u) := \mu \phi(u) u(1-u)$, with $\phi(u) \in C^0([0,1]; [-1,1])$, $\mu \ge 0$.

Example 0: Scalar advection-diffusion-reaction

Find u so that $\partial_t u + \nabla \cdot (\mathbf{f}(\mathbf{x}, u) - \kappa(u) \nabla u) - \mathbf{S}(u) = 0, \quad u(\cdot, 0) = u_0(\cdot),$

For instance $\mathbf{S}(u) := \mu \phi(u) u(1-u)$, with $\phi(u) \in C^0([0,1]; [-1,1])$, $\mu \ge 0$.

Fluxes

$$f(\mathbf{u}) := \begin{cases} \mathbf{f}(u) \\ \beta \mathbf{x} & \text{with } \nabla \cdot \boldsymbol{\beta} = \mathbf{0} \end{cases}$$
$$g(\mathbf{u}, \nabla \mathbf{u}) := \kappa(u) \nabla u.$$

Example 1: Navier-Stokes

Find $\mathbf{u} := (\rho, \mathbf{m}, E)^{\mathsf{T}}$ so that

$$\begin{split} &\partial_t \rho + \nabla \cdot (\mathbf{v}\rho) = 0, \\ &\partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + \rho(\mathbf{u})\mathbb{I} - \mathfrak{s}(\mathbf{v})) = \mathbf{0}, \\ &\partial_t E + \nabla \cdot (\mathbf{v}(E + \rho(\mathbf{u})) - \mathfrak{s}(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u})) = 0, \end{split}$$

with $\mathbf{v} := \mathbf{m}/\rho$: velocity; $p(\mathbf{u})$: pressure.

Example 1: Navier-Stokes

Find $\mathbf{u} := (\rho, \mathbf{m}, E)^{\mathsf{T}}$ so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} - \mathfrak{s}(\mathbf{v})) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + p(\mathbf{u})) - \mathfrak{s}(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u})) &= 0, \end{split}$$

with $\mathbf{v} := \mathbf{m}/\rho$: velocity; $p(\mathbf{u})$: pressure.

Fluxes

$$f(\mathbf{u}) := \begin{pmatrix} \mathbf{v}\rho \\ \mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} \\ \mathbf{v}(\mathcal{E} + p(\mathbf{u})) \end{pmatrix}, \qquad g(\mathbf{u}, \nabla \mathbf{u}) := \begin{pmatrix} 0 \\ -s(\mathbf{v}) \\ -s(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u}) \end{pmatrix}$$

٠

Example 1: Navier-Stokes

Find $\mathbf{u} := (\rho, \mathbf{m}, E)^{\mathsf{T}}$ so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} - \mathfrak{s}(\mathbf{v})) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + p(\mathbf{u})) - \mathfrak{s}(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u})) &= 0, \end{split}$$

with $\mathbf{v} := \mathbf{m}/\rho$: velocity; $p(\mathbf{u})$: pressure.

Fluxes

$$f(\mathbf{u}) := \begin{pmatrix} \mathbf{v}\rho \\ \mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} \\ \mathbf{v}(E + p(\mathbf{u})) \end{pmatrix}, \quad g(\mathbf{u}, \nabla \mathbf{u}) := \begin{pmatrix} 0 \\ -s(\mathbf{v}) \\ -s(\mathbf{v}) \cdot \mathbf{v} + q(\mathbf{u}) \end{pmatrix}$$

Possible definitions for s and q:

$$s(\mathbf{v}) = 2\mu e(\mathbf{v}) + (\lambda - \frac{2}{3}\mu)(\nabla \cdot \mathbf{v})\mathbb{I}, \qquad \mathbf{q}(\mathbf{u}) = -\kappa \nabla e(\mathbf{u}).$$

æ

٠

Example 2: Gray radiation hydrodynamics

• Find
$$\mathbf{u} := (\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}})^{\mathsf{T}}$$
 so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + (\rho(\mathbf{u}) + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))\mathbb{I}) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + \rho(\mathbf{u}) + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= 0, \\ \partial_t \mathcal{E}_{\mathrm{R}} + \nabla \cdot (\mathbf{v}(\mathcal{E}_{\mathrm{R}} + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \mathbf{v} \cdot \nabla \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= \sigma_{\mathrm{a}} c (a_{\mathrm{R}} T^4 - \mathcal{E}_{\mathrm{R}}), \end{split}$$

with $\mathcal{E}_{\rm R}:$ radiation energy; $\textit{p}_{\rm R}(\mathcal{E}_{\rm R}):$ radiation pressure; T(u): temperature;

◆日 > < 同 > < 回 > < 回 >

Example 2: Gray radiation hydrodynamics

• Find
$$\mathbf{u} := (\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}})^{\mathsf{T}}$$
 so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + (\rho(\mathbf{u}) + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))\mathbb{I}) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + \rho(\mathbf{u}) + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= 0, \\ \partial_t \mathcal{E}_{\mathrm{R}} + \nabla \cdot (\mathbf{v}(\mathcal{E}_{\mathrm{R}} + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \mathbf{v} \cdot \nabla \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= \sigma_{\mathrm{a}} c (a_{\mathrm{R}} T^4 - \mathcal{E}_{\mathrm{R}}), \end{split}$$

with $\mathcal{E}_{\rm R}:$ radiation energy; $\textit{p}_{\rm R}(\mathcal{E}_{\rm R}):$ radiation pressure; T(u): temperature;

c: speed of light; $\sigma_{\rm a}$, $\sigma_{\rm t}$: absorption and total cross sections; $a_{\rm R} := \frac{4\sigma}{c}$ radiation constant; σ the Stefan–Boltzmann constant.

A D > A D > A D > A D > A

Example 2: Gray radiation hydrodynamics

• Find
$$\mathbf{u} := (\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}})^{\mathsf{T}}$$
 so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + (\rho(\mathbf{u}) + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))\mathbb{I}) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + \rho(\mathbf{u}) + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= 0, \\ \partial_t \mathcal{E}_{\mathrm{R}} + \nabla \cdot (\mathbf{v}(\mathcal{E}_{\mathrm{R}} + \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \mathbf{v} \cdot \nabla \rho_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= \sigma_{\mathrm{a}} c (a_{\mathrm{R}} T^4 - \mathcal{E}_{\mathrm{R}}), \end{split}$$

with $\mathcal{E}_{\rm R}$: radiation energy; $p_{\rm R}(\mathcal{E}_{\rm R})$: radiation pressure; $T(\mathbf{u})$: temperature;

c: speed of light; $\sigma_{\rm a}$, $\sigma_{\rm t}$: absorption and total cross sections; $a_{\rm R} := \frac{4\sigma}{c}$ radiation constant; σ the Stefan–Boltzmann constant.

Possible definitions:

$$p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) := \frac{1}{3} \mathcal{E}_{\mathrm{R}}; \qquad c_{\mathrm{v}} T = e(\mathbf{u}) := \frac{1}{\rho} (E - \frac{1}{2} \rho \mathbf{v}^2).$$

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction Invariant domains

Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

Invariant domains

Key assumption: existence of an invariant domain

• Let $\mathbf{u}_0 \in \mathcal{D}$.

There exists a set A ⊊ ℝ^m, convex and depending on u₀, so that the "entropy" solution takes values in A for a.e. x ∈ D and t > 0.

$$(\mathbf{u}_0(\mathbf{x}) \in \mathcal{A}, \forall \mathbf{x} \in D) \Longrightarrow (\mathbf{u}(\mathbf{x}, t) \in \mathcal{A}, \forall \mathbf{x} \in D, \forall t > 0).$$

▶ This is a generalization of the maximum principle.

э

(日)

Scalar conservation equations without reaction

$$\mathcal{A} := [\operatorname*{ess\,inf}_{x \in \mathbb{R}} u_0(x), \operatorname*{ess\,sup}_{x \in \mathbb{R}} u_0(x)] \hspace{1em} ext{is a convex subset of } \mathbb{R}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Scalar conservation equations without reaction

 $\mathcal{A} := [\operatorname*{essinf}_{x \in \mathbb{R}} u_0(x), \operatorname*{ess\,sup}_{x \in \mathbb{R}} u_0(x)] \hspace{1mm} ext{is a convex subset of } \mathbb{R}$

Scalar conservation equations with $S(u) := \mu \phi(u) u(1-u)$,

 $\mathcal{A}:=[0,1] \quad \text{is a convex subset of } \mathbb{R}$

Euler equations with specific entropy s

$$\mathcal{A} := \{\mathbf{u} := (\rho, \mathbf{m}, E) \in \mathbb{R}^{d+2} \mid \rho > 0, E - \frac{1}{2} \frac{\mathbf{m}^2}{\rho} > 0, s(\mathbf{u}) \ge \operatorname{essinf}_{\mathbf{x} \in D} s(\mathbf{u}_0)\}$$

Euler equations with Nobel Abel stiffen gas equation of state

$$egin{aligned} \mathcal{A} &:= \{ \mathbf{u} := (
ho, \mathbf{m}, E) \in \mathbb{R}^{d+2} \mid
ho > 0, \ & rac{1}{1-b
ho}(E-rac{1}{2}rac{\mathbf{m}^2}{
ho}-q) -
ho_\infty > 0, s(\mathbf{u}) \geq & ext{essinf } s(\mathbf{u}_0) \} \end{aligned}$$

æ

Navier-Stokes equations

$$\mathcal{A} := \{ (\rho, \mathbf{m}, E) \in \mathbb{R}^{d+2} \mid \rho > 0, E - \frac{1}{2} \frac{\mathbf{m}^2}{\rho} > 0 \}$$

- \blacktriangleright *A* is convex in both cases.
- Invariant domain for the Euler equations is smaller than that for the Navier-Stokes equations.

Hyperbolic and parabolic operators may have conflicting constraints.

Example 1: Navier-Stokes

- Euler: Conserved variables are natural for solving the hyperbolic problem
- Navier-Stokes: primitive variables (velocity, internal energy) are more appropriate for the parabolic part.
- The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.

э

ヘロト ヘ週ト ヘヨト ヘヨト

Example 2: Gray radiation hydrodynamics

- Euler: Conserved variables $(\rho, \mathbf{m}, E, \mathcal{E}_{R}^{\frac{3}{4}})^{\mathsf{T}}$.
- ▶ Parabolic part: $(T, \mathcal{E}_{\mathrm{R}})^{\mathsf{T}}$.
- The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.

- How can one reconcile all these constraints?
- How can one construct approximation techniques in time and space that preserve invariant domains?
- Terminology: approximation methods that preserve invariant domains are called Invariant domain preserving (IDP)

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction Invariant domains Problems with SSP time stepping

nvariant-domain-preserving Explict Runge-Kutta Numerical illustrations nvariant-domain-preserving IMEX

SSP

э

ヘロト 人間ト 人間ト 人間ト

- Approximate $\mathbf{u}(\mathbf{x}, t)$ in space with dofs in $\mathbb{R}^{m \times l}$.
- I : dimension of the approximation vector space (Finite elements (C⁰ or dG), Finite Volume, Finite Differences, etc.).
- ▶ Let $\mathbf{F} : \mathbb{R}^{m \times I} \to \mathbb{R}^{m \times I}$ be approximation in space of $-\nabla \cdot \mathbb{f}(\mathbf{u})$. (The way this is done does not matter here.)
- ▶ Semi-discrete problem: Find $\mathbf{U} \in C^1([0, T]; \mathbb{R}^{m \times 1})$ s.t.

$$\mathbb{M}\partial_t \mathbf{U} = \mathbf{F}(\mathbf{U}), \quad \mathbf{U}(0) = \mathbf{U}_0.$$

 \mathbb{M} : mass matrix (invertible)

- ▶ Assume $U_0 \in A'$.
- How can one construct time-stepping technique that guarantee Uⁿ ∈ A^I, for all n ≥ 0?

・ロト ・ 同ト ・ ヨト ・ ヨト

Key idea by Shu&Osher (1988)

Use explicit Runge-Kutta methods where the final update is a convex combination of updates computed with the forward Euler method.

Key idea by Shu&Osher (1988)

Use explicit Runge-Kutta methods where the final update is a convex combination of updates computed with the forward Euler method.

Key assumption: (Forward Euler with low-order flux is invariant-domain preserving.) ∃Δt* > 0 s.t. ∀Δt ∈ (0, Δt*) and ∀V ∈ ℝ^{m×1}

$$ig(oldsymbol{V} \in \mathcal{A}') \Longrightarrow (oldsymbol{V} + \Delta t(\mathbb{M})^{-1} oldsymbol{F}(oldsymbol{V}) \in \mathcal{A}').$$

 $\Leftrightarrow \mathcal{A}^{l}$ is invariant by the forward Euler method under the CFL condition $\Delta t \in (0, \Delta t^{*})$.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト
SSP (strong stability preserving)

- Theory well understood now:
 - Kraaijevanger (1991),
 - Spiteri-Ruuth (2002),
 - Ferracina-Spijker (2005),
 - Higueras (2005).

э

A D > A P > A D > A D >

Examples (for $\partial_t u = L(t, u)$)

$$w^{(1)} := u^n + \Delta t L(t_n, u^n),$$

$$w^{(2)} := \frac{1}{2}u^n + \frac{1}{2}(w^{(1)} + \Delta t L(t_n + \Delta t, w^{(1)})),$$

・ロト ・四ト ・ヨト ・ヨト

Examples (for $\partial_t u = L(t, u)$)

SSPRK(3,3)

	α			γ		
1			1			0
$\frac{3}{4}$	$\frac{1}{4}$		0	$\frac{1}{4}$		1
$\frac{1}{3}$	Ö	$\frac{2}{3}$	0	Ö	$\frac{2}{3}$	$\frac{1}{2}$

$$\begin{split} w^{(1)} &:= u^n + \Delta t L(t_n, u^n), \\ w^{(2)} &:= \frac{3}{4} u^n + \frac{1}{4} (w^{(1)} + \Delta t L(t_n + \Delta t, w^{(1)})), \\ w^{(3)} &:= \frac{1}{3} u^n + \frac{2}{3} (w^{(2)} + \Delta t L(t_n + \frac{1}{2} \Delta t, w^{(2)})), \end{split}$$

Examples (for $\partial_t u = L(t, u)$)

SSPRK(4,3)

	C	r			ļ	3		γ
1				$\frac{1}{2}$				0
0	1			Ō	$\frac{1}{2}$			$\frac{1}{2}$
$\frac{2}{3}$	0	$\frac{1}{3}$		0	Ō	$\frac{1}{6}$		1
Ő	0	Ő	1	0	0	Ő	$\frac{1}{2}$	$\frac{1}{2}$

$$\begin{split} w^{(1)} &:= u^{n} + \frac{1}{2} \Delta t L(t_{n}, u^{n}), \\ w^{(2)} &:= w^{(1)} + \frac{1}{2} \Delta t L(t_{n} + \frac{1}{2} \Delta t, w^{(1)}), \\ w^{(3)} &:= \frac{2}{3} u^{n} + \frac{1}{3} (w^{(2)} + \frac{1}{2} \Delta t L(t_{n} + \Delta t, w^{(2)})), \\ w^{(4)} &:= w^{(3)} + \frac{1}{2} \Delta t L(t_{n} + \frac{1}{2} \Delta t, w^{(3)}), \end{split}$$

Problems with SPPRK: Efficiency

Definition (Efficiency ratio)

- Let τ^* maximal time step that makes the forward Euler method IDP.
- Let τ̃ be the maximal time step that makes some s-stage ERK method IDP as well.
- ▶ We call *efficiency ratio* of the *s*-stage ERK method the ratio $c_{\text{eff}} := \frac{\Delta t}{s\Delta t^*}$. (Usually $c_{\text{eff}} \leq 1$.)

Proposition

Under the same CFL constraint, the number of flux evaluations of SSPRK(s, p) is equal to $\frac{1}{C_{eff}} \times$ that of the forward Euler method.

Problems with SPPRK: Efficiency

Examples

Problems with SPPRK: Efficiency

- SSPRK methods are usually inefficient!
- The most popular method SSPRK(3,3) is actually one of the most inefficient!

ヘロト ヘ週ト ヘヨト ヘヨト

Some optimal methods

Four-stages, third-order, AE, JLG (2022).

Five-stages, fourth-order, AE, JLG (2022).

0

0

152535

0.2

0.2607558226955500 0.1392441773044501

- -0.2585651787257025 0.9113627416628056 -0.0527975629371033
 - $0.2162327643150383 \quad 0.5153422309960234 \quad -0.8166279419926541 \quad 0.8850529466815924$

(日)

Problems with SPPRK: Accuracy

Accuracy of SSPRK methods restricted to fourth-order if one insists on never stepping backward in time, Ruuth, Spiteri (2002).

Problems with SPPRK: extensions to IMEX methods

- The SSPRK paradigm cannot be easily modified to accommodate implicit and explicit sub-steps.
- Implicit RK schemes of order 2 and above cannot be SSP, Gottlieb, Shu, Tadmor (2001)
- Some alternatives:
 - SSP Explicit methods ⇒ Parabolic time step restriction Δt ≤ ch²; see Zhang & Shu (2017)
 - Using two derivatives Gottlieb, Grant, Hu, Shu (2022)

イロト 不得 トイヨト イヨト

Problems with SPPRK: extensions to IMEX methods

Example (Compressible Navier-Stokes)

- Difficulties: conflicting invariant sets and conflicting variables.
- Which invariant domain to preserve?
 - Minimum entropy principle is true for Euler.
 - Minimum entropy principle is false for NS.
- Which variable should be used?
 - "Right variable" for Euler is $\mathbf{u} = (\rho, \mathbf{m}, E)$ (conserved variables).
 - "Right variable" for NS is (ρ, \mathbf{v}, e) (primitive variables).
 - Some advocate "entropy variable" and "entropy stability". Why?
- How to do the explicit-implicit time stepping?
- How linearization should be done in the implicit substeps?
 - Most "IMEX" methods cannot make the difference between conserved and primitive variables.
 - Most "IMEX" methods cannot be properly linearized and be conservative (no generic theory).

Problems with SPPRK: extensions to IMEX methods

► Conclusion: One needs a new paradigm.

Outline

Introduction Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

IDPERK

э

ヘロト 人間ト 人間ト 人間ト

- The beauty of SSPRK methods is that the forward Euler sub-step is a black box.
- The black box invokes two fluxes (not just one as one might think):
 - Low-order (in space) \mathbf{F}^{L} , low-order mass matrix \mathbb{M}^{L}
 - High-order (in space) \mathbf{F}^{H} , low-order mass matrix \mathbb{M}^{H}
- Ideally, one would like to solve

$$\mathbb{M}^{\mathsf{H}}\partial_{t}\mathsf{U}=\mathsf{F}^{\mathsf{H}}(\mathsf{U})$$

since the space approximation is accurate, but this method violates the invariant-domain property.

Key assumptions

Assumption 1: (Forward Euler with low-order flux is invariant-domain preserving.) Assume ∃Δt* > 0 so that for all Δt ∈ (0, Δt*) for all V ∈ ℝ^{m×l}

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow(\mathbf{V}+\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{F}^{\mathsf{L}}(\mathbf{V})\in\mathcal{A}').$$

э

ヘロト ヘ戸ト ヘヨト ヘヨト

Key assumptions

► Assumption 2: There exists a nonlinear limiting operator $\ell : \mathcal{A}' \times (\mathbb{R}^m)' \times (\mathbb{R}^m)' \to (\mathbb{R}^m)'$ such that for all $(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}})$

$$(\mathbf{V} + \Delta t(\mathbb{M}^{\mathsf{L}})^{-1} \mathbf{\Phi}^{\mathsf{L}} \in \mathcal{A}') \Longrightarrow (\ell(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}) \in \mathcal{A}').$$

э

(日)

Key assumptions

► Assumption 2: There exists a nonlinear limiting operator $\ell : \mathcal{A}' \times (\mathbb{R}^m)' \times (\mathbb{R}^m)' \to (\mathbb{R}^m)'$ such that for all $(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}})$

$$(\mathbf{V} + \Delta t(\mathbb{M}^{\mathsf{L}})^{-1} \mathbf{\Phi}^{\mathsf{L}} \in \mathcal{A}') \Longrightarrow (\ell(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}) \in \mathcal{A}').$$

Key idea: ℓ(V, Φ^L, Φ^H) is defined as convex combination of V + Δt(M^L)⁻¹Φ^H and V + Δt(M^L)⁻¹Φ^L.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

• Given \mathbf{U}^n in the invariant set \mathcal{A}^l (approximation at time t^n),

- The forward Euler step proceeds as follows:
 - Compute low-order flux F^L(Uⁿ)
 - Compute high-order flux F^H(Uⁿ)
 - Compute update Uⁿ⁺¹ by limiting

$$\mathbf{U}^{n+1} := \ell(\mathbf{U}^n, \mathbf{F}^{\mathsf{L}}(\mathbf{U}^n), \mathbf{F}^{\mathsf{H}}(\mathbf{U}^n)).$$

Theorem (IDP Explicit Euler)

Let Assumptions 1 and 2 be met. Assume $\mathbf{U}^n \in \mathcal{A}^l$, then $\mathbf{U}^{n+1} \in \mathcal{A}^l$ for all $\Delta t \in (0, \Delta t^*)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Key idea of invariant-domain-preserving ERK

Externalize the limiting process at each RK sub-step.

ヘロト ヘ週ト ヘヨト ヘヨト

Details for s-stage ERK method

Consider Butcher tableau for s-stage method

• Rename last line, set $c_1 = 0$ and $c_{s+1} = 1$.

э

Assume c_k ≥ 0 for all k ∈ {1:s + 1}.
For sake of simplicity assume c_{l-1} ≤ c_l, ∀l ∈ {2:s + 1}, and set

$$l'(l) := l - 1.$$

(Otherwise set $l'(l) := \max\{k < l \mid c_l - c_k \ge 0\}$.)

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

- ▶ Let $\mathbf{U}^n \in \mathcal{A}^I$.
- $\blacktriangleright \text{ Set } \mathbf{U}^{n,1} := \mathbf{U}^n.$
- ▶ Loop over $l \in \{2: s+1\}$.

• Compute first-order update starting from $U^{n,l'}$ (think of l' = l - 1)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},\mathsf{l}} := \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n,\mathfrak{l}'} + \Delta t(c_{\mathsf{l}} - c_{\mathsf{l}'})\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,\mathfrak{l}'}).$$

Compute high-order ERK update starting from Uⁿ

$$\mathbb{M}^{\mathsf{H}}\mathbf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}}\mathbf{U}^{n} + \Delta t \sum_{k \in \{1: l-1\}} a_{l,k} \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n,k}).$$

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

- ▶ Let $\mathbf{U}^n \in \mathcal{A}^I$.
- $\blacktriangleright \text{ Set } \mathbf{U}^{n,1} := \mathbf{U}^n.$
- ▶ Loop over $l \in \{2: s+1\}$.

• Compute first-order update starting from $U^{n,l'}$ (think of l' = l - 1)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},\mathsf{l}} := \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n,\mathfrak{l}'} + \Delta t(c_{\mathsf{l}} - c_{\mathsf{l}'})\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,\mathfrak{l}'}).$$

Compute high-order ERK update starting from Uⁿ

$$\mathbb{M}^{\mathsf{H}}\mathsf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}}\mathsf{U}^{n} + \Delta t \sum_{k \in \{1:l-1\}} a_{l,k}\mathsf{F}^{\mathsf{H}}(\mathsf{U}^{n,k}).$$

▶ Incompatibility of the starting points $(\mathbf{U}^{n,l'} \neq \mathbf{U}^n$ in general).

- ▶ Let $\mathbf{U}^n \in \mathcal{A}^I$.
- $\blacktriangleright \text{ Set } \mathbf{U}^{n,1} := \mathbf{U}^n.$
- Loop over $l \in \{2: s+1\}$.

• Compute first-order update starting from $U^{n,l'}$ (think of l' = l - 1)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},\mathsf{l}} := \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n,\mathfrak{l}'} + \Delta t(c_{\mathsf{l}} - c_{\mathsf{l}'})\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,\mathfrak{l}'}).$$

Compute high-order ERK update starting from Uⁿ

$$\mathbb{M}^{\mathsf{H}}\mathsf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}}\mathsf{U}^{n} + \Delta t \sum_{k \in \{1:l-1\}} a_{l,k}\mathsf{F}^{\mathsf{H}}(\mathsf{U}^{n,k}).$$

Incompatibility of the starting points (U^{n,1'} ≠ Uⁿ in general).
 Subtract ERK update at tⁿ + c_l∆t from ERK update at tⁿ + c_{l'}∆t

$$\mathbb{M}^{\mathsf{H}}\mathsf{U}^{\mathsf{H},l} = \mathbb{M}^{\mathsf{H}}\mathsf{U}^{\mathsf{H},l'} + \Delta t \sum_{k \in \{1:l-1\}} (a_{l,k} - a_{l',k})\mathsf{F}^{\mathsf{H}}(\mathsf{U}^{n,k}).$$

(日)

- Replace U^{H,I'} (which is not IDP) by U^{n,I'} (which is IDP by induction assumption).
- Final scheme

$$\mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},l} := \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n,l'} + \Delta t \underbrace{(c_l - c_{l'}) \mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,l'})}_{\mathbf{\Phi}^{\mathsf{L}}}.$$
$$\mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n,l'} + \Delta t \underbrace{\sum_{k \in \{1:l-1\}} (a_{l,k} - a_{l',k}) \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n,k})}_{\mathbf{\Phi}^{\mathsf{H}}}.$$
$$\mathbf{U}^{n,l} := \ell(\mathbf{U}^{n,l'}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}).$$

 $\blacktriangleright \text{ Set } \mathbf{U}^{n+1} := \mathbf{U}^{n,s+1}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Theorem Assume that $\mathbf{U}^n \in \mathcal{A}^l$. Then $\mathbf{U}^{n+1} \in \mathcal{A}^l$ for all $\Delta t \in (0, \frac{\Delta t^*}{\max_{l \in \{2:s+1\}}(c_l - c_{l'})})$.

Corollary

►
$$c_{\text{ef}} = \frac{1}{s \max_{l \in \{2: s+1\}} (c_l - c_{l'})}$$

• The complexity of the ERK method is optimal if the points $\{c_l\}_{l \in \{1:s+1\}}$ are equi-distributed in [0, 1].

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

Introduction Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations

Numerical illustrations

э

・ロト ・四ト ・ヨト ・ヨト

Examples (optimal methods)

æ

0

 $\frac{2}{3}$

<ロト <回ト < 注ト < 注ト

Examples SSPRK (sub-optimal methods)

æ

<ロト <回ト < 注ト < 注ト

Examples: popular RK4 (left) and 3/8 rule (right)

	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{array} $	0 1 2 0 0	0 1 2 0	0 1	0			0 1 3 2 3 1	$0 \\ \frac{\frac{1}{3}}{-\frac{1}{3}} \\ 1$	0 1 —1	0 1	0
_	1	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	-		1	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$
	$RK(4,4;\frac{1}{2})$								RK	(4,4; 3	;)	

Examples RK5 methods: Equi-distributed (left), Butcher's method (right)

イロト イポト イヨト イヨト

All the tests are done with

$$\Delta t := \mathsf{CFL} \times s \times \Delta t^*,$$

➤ ⇒ All the methods perform exactly the same number of time steps independently of s (i.e., number of flux evaluations is constant).

ヘロト ヘヨト ヘヨト ヘヨト

- 4th-order FD in space.
- Linear transport D = (0, 1)

$$\partial_t u + \partial_x u = 0, \qquad u_0(x) := \begin{cases} (4\frac{(x-x_0)(x_1-x)}{x_1-x_0})^6 & x \in (x_0 := 0.1, x_1 := 0.4) \\ 0 & otherwise \end{cases}$$

- Local maximum/minimum principle guaranteed at every grid point.
- Global maximum and minimum also exactly enforced.
- All errors computed in L^{∞} -norm.

Table: Second-order methods (SSPRK(2,2) behaves badly).

		CFL	= 0.2		1 [CFL = 0.25					
1	RK(2,2;1)	rate	$RK(2,2;\frac{1}{2})$	rate	ĺľ	RK(2,2;1)	rate	$RK(2,2;\frac{1}{2})$	rate		
50	4.72E-02	-	1.23E-01	-	1 [4.91E-02	-	1.30E-01	-		
100	2.81E-03	4.07	1.50E-02	3.03		4.51E-03	3.44	4.32E-02	1.60		
200	1.16E-03	1.28	1.24E-03	3.60		2.01E-03	1.17	2.14E-03	4.34		
400	3.38E-04	1.78	3.47E-04	1.84		5.41E-04	1.89	5.67E-04	1.91		
800	8.79E-05	1.94	9.28E-05	1.90		1.38E-04	1.97	1.48E-04	1.94		
1600	2.22E-05	1.98	2.33E-05	1.99		3.47E-05	1.99	3.78E-05	1.97		
3200	5.58E-06	1.99	5.92E-06	1.98		8.73E-06	1.99	5.36E-05	50		

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Table: Third-order methods (SSPRK(3,3) behaves badly).

			CFL = 0	.05		CFL = 0.25						
1	RK(3,3;1)	rate	RK(3,3; ¹ / ₃)	rate	RK(4,3;1)	rate	RK(3,3;1)	rate	$RK(3,3;\frac{1}{3})$	rate	RK(4,3;1)	rate
50	5.15E-02	-	4.76E-02	-	5.15E-02	-	5.48E-02	-	1.55E-01	-	6.08E-02	-
100	5.41E-03	3.25	5.41E-03	3.14	5.41E-03	3.25	5.15E-03	3.41	6.12E-02	1.35	6.15E-03	3.31
200	3.79E-04	3.83	3.79E-04	3.83	3.79E-04	3.83	3.92E-04	3.72	1.07E-03	5.84	3.83E-04	4.01
400	2.27E-05	4.06	2.27E-05	4.06	2.27E-05	4.06	2.89E-05	3.76	2.18E-04	2.29	2.30E-05	4.06
800	1.58E-06	3.85	1.58E-06	3.85	1.58E-06	3.85	3.20E-06	3.18	6.41E-05	1.77	1.59E-06	3.85
1600	9.12E-08	4.12	1.22E-07	3.69	8.13E-08	4.28	8.23E-07	1.96	1.83E-05	1.81	8.25E-08	4.27
3200	1.52E-08	2.58	6.84E-08	0.84	5.31E-09	3.94	2.40E-07	1.78	5.39E-06	1.76	5.39E-09	3.94

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Table: Fourth-order methods (SSPRK(5,4) behaves badly).

			CFL = 0.	05		CFL = 0.2						
1	RK(4,4; $\frac{1}{2}$)	rate l	RK [‡] (5,4; <u>†</u>)) rate	RK(5,4;1)	rate	RK(4,4; ¹ / ₂)	rate	RK [‡] (5,4; ¹ / ₂)	rate	RK(5,4;1)	rate
50	4.32E-02	-	5.37E-02	-	5.95E-02	-	1.26E-01	-	5.63E-02	-	5.55E-02	-
100	5.41E-03	3.00	5.09E-03	3.40	5.09E-03	3.54	1.65E-02	2.93	7.82E-03	2.85	5.72E-03	3.28
200	3.79E-04	3.84	3.04E-04	4.07	3.04E-04	4.07	4.10E-04	5.33	3.80E-04	4.36	3.82E-04	3.90
400	2.27E-05 4	4.06	1.91E-05	3.99	1.91E-05	3.99	5.02E-05	3.03	2.27E-05	4.06	2.29E-05	4.06
800	1.58E-06 3	3.85	1.19E-06	4.00	1.19E-06	4.00	1.10E-05	2.19	1.79E-06	3.67	1.60E-06	3.84
1600	8.13E-08 4	4.28	7.45E-08	4.00	7.45E-08	4.00	2.70E-06	2.03	3.66E-07	2.29	8.26E-08	4.28
3200	5.36E-09 3	3.92	4.65E-09	4.00	4.65E-09	4.00	7.69E-07	1.81	9.29E-08	1.98	5.38E-09	3.94

æ

・ロト ・個ト ・ヨト ・ヨト
1D linear transport, 4th-order FD

Table: Fifth-order methods, error in the L^{∞} -norm.

		CFL =	= 0.02	CFL = 0.025				
I	$RK(6,5;\frac{1}{3})$	rate	RK(7,5;1)	rate	$RK(6,5;\frac{2}{3})$	rate	RK(7,5;1)	rate
50	5.19E-02	-	5.19E-02	-	5.19E-02	-	5.19E-02	-
100	5.41E-03	3.26	5.41E-03	3.26	5.41E-03	3.26	5.41E-03	3.26
200	3.79E-04	3.83	3.79E-04	3.83	3.79E-04	3.84	3.79E-04	3.83
400	2.27E-05	4.06	2.27E-05	4.06	2.27E-05	4.06	2.27E-05	4.06
800	1.58E-06	3.85	1.58E-06	3.85	1.58E-06	3.85	1.58E-06	3.85
1600	8.48E-08	4.22	8.13E-08	4.28	8.71E-08	4.18	8.13E-08	4.28
3200	7.10E-09	3.58	5.92E-09	3.78	1.16E-08	2.91	5.56E-09	3.87

2D linear transport, \mathbb{P}_1 FE (3th-order super-convergent)

- P₁ finite elements in space (4th-order super-convergence on uniform meshes).
- Linear transport $D := (0,1)^2$ with $\beta := (0.9,1)^T$

$$\partial_t u + \nabla \cdot (\beta u) = 0, \qquad u_0(\mathbf{x}) := \begin{cases} (4 \frac{(x - x_0)(x_1 - x)}{x_1 - x_0})^4 \times (4 \frac{(y - y_0)(y_1 - y)}{y_1 - y_0})^4 & x \in D_0 \\ 0 & oth. \end{cases}$$

with $D_0\{x_0 \le x \le x_1, y_0 \le y \le y_1\}$, $x_0 = y_0 = 0.1$, $x_1 = y_1 = 0.4$.

- Local maximum/minimum principle guaranteed at every grid point.
- Global maximum and minimum also exactly enforced.
- All errors computed at T = 0.5

2D linear transport, \mathbb{P}_1 FE (4th-order super-convergent)

Table: Relative error L^1 -norm, T = 0.5. CFL = 0.4, second-order; CFL = 0.7 third-order; CFL = 0.5 fourth-order; CFL = 0.4 fifth-order.

1	RK(2,1;1)	rate	RK [‡] (2,2; ¹ / ₂) rat	e					
50	2.96E-02	-	3.91E-02	-						
100	7.36E-03	2.01	7.47E-03	2.3	9					
200	1.94E-03	1.93	1.94E-03	1.9	5					
400	4.89E-04	1.99	4.89E-04	1.9	9					
800	1.23E-04	1.99	1.26E-04	1.9	5					
1	RK(3,3;1)	rate	$RK^{\ddagger}(3,3;\frac{1}{3})$) rat	e RK(4,3;1)	rate	7			
50	2.80E-02	-	6.48E-02	-	2.40E-02	-				
100	3.31E-03	3.08	6.81E-03	3.2	5 1.48E-03	4.02				
200	4.11E-04	3.01	4.23E-04	4.0	1 8.48E-05	4.13				
400	5.15E-05	3.00	5.33E-05	2.9	9 5.37E-06	3.98	:			
800	6.42E-06	3.00	6.63E-06	3.0	1 3.57E-07	3.91				
1	RK(4,4; ¹ / ₂)	rate	$RK(4.4;\frac{3}{4})$	rate	$RK^{\ddagger}(5.4;\frac{1}{2})$	rate	RK(5.4:1)	rate	RK(6.4.1)	rate
			(' ' 4 /		(-, ,))		(-, ,)		(0, 1, 1)	
50	3.79E-02	-	6.25E-02	-	2.32E-02	-	2.20E-02	-	3.32E-02	-
50 100	3.79E-02 1.68E-03	_ 4.49	6.25E-02 5.85E-03	- 3.42	2.32E-02 1.30E-03	_ 4.16	2.20E-02 1.27E-03	4.12	3.32E-02 1.57E-03	- 4.40
50 100 200	3.79E-02 1.68E-03 6.45E-05	- 4.49 4.71	6.25E-02 5.85E-03 8.28E-05	- 3.42 6.14	2.32E-02 1.30E-03 6.43E-05	- 4.16 4.33	2.20E-02 1.27E-03 7.49E-05	- 4.12 4.08	3.32E-02 1.57E-03 5.05E-05	- 4.40 4.95
50 100 200 400	3.79E-02 1.68E-03 6.45E-05 3.93E-06	- 4.49 4.71 4.04	6.25E-02 5.85E-03 8.28E-05 7.21E-06	- 3.42 6.14 3.52	2.32E-02 1.30E-03 6.43E-05 4.56E-06	- 4.16 4.33 3.82	2.20E-02 1.27E-03 7.49E-05 4.92E-06	- 4.12 4.08 3.93	3.32E-02 1.57E-03 5.05E-05 3.33E-06	- 4.40 4.95 3.92
50 100 200 400 800	3.79E-02 1.68E-03 6.45E-05 3.93E-06 2.82E-07	- 4.49 4.71 4.04 3.80	6.25E-02 5.85E-03 8.28E-05 7.21E-06 6.73E-07	- 3.42 6.14 3.52 3.42	2.32E-02 1.30E-03 6.43E-05 4.56E-06 3.59E-07	- 4.16 4.33 3.82 3.67	2.20E-02 1.27E-03 7.49E-05 4.92E-06 3.53E-07	- 4.12 4.08 3.93 3.80	3.32E-02 1.57E-03 5.05E-05 3.33E-06 2.33E-07	- 4.40 4.95 3.92 3.84
50 100 200 400 800	3.79E-02 1.68E-03 6.45E-05 3.93E-06 2.82E-07 RK(6,5; ² / ₃)	- 4.49 4.71 4.04 3.80 rate	6.25E-02 5.85E-03 8.28E-05 7.21E-06 6.73E-07 RK(7,5;1)	- 3.42 6.14 3.52 3.42 rate	2.32E-02 1.30E-03 6.43E-05 4.56E-06 3.59E-07	- 4.16 4.33 3.82 3.67	2.20E-02 1.27E-03 7.49E-05 4.92E-06 3.53E-07	- 4.12 4.08 3.93 3.80	3.32E-02 1.57E-03 5.05E-05 3.33E-06 2.33E-07	- 4.40 4.95 3.92 3.84
50 100 200 400 800 <i>I</i> 50	3.79E-02 1.68E-03 6.45E-05 3.93E-06 2.82E-07 RK(6,5; ² / ₃) 1.87E-02	- 4.49 4.71 4.04 3.80 rate -	6.25E-02 5.85E-03 8.28E-05 7.21E-06 6.73E-07 RK(7,5;1) 1.66E-02	- 3.42 6.14 3.52 3.42 rate -	2.32E-02 1.30E-03 6.43E-05 4.56E-06 3.59E-07	- 4.16 4.33 3.82 3.67	2.20E-02 1.27E-03 7.49E-05 4.92E-06 3.53E-07	- 4.12 4.08 3.93 3.80	3.32E-02 1.57E-03 5.05E-05 3.33E-06 2.33E-07	- 4.40 4.95 3.92 3.84
50 100 200 400 800 <i>I</i> 50 100	3.79E-02 1.68E-03 6.45E-05 3.93E-06 2.82E-07 RK(6,5; ² / ₃) 1.87E-02 1.01E-03	- 4.49 4.71 4.04 3.80 rate - 4.21	6.25E-02 5.85E-03 8.28E-05 7.21E-06 6.73E-07 RK(7,5;1) 1.66E-02 9.26E-04	- 3.42 6.14 3.52 3.42 rate - 4.17	2.32E-02 1.30E-03 6.43E-05 4.56E-06 3.59E-07	4.16 4.33 3.82 3.67	2.20E-02 1.27E-03 7.49E-05 4.92E-06 3.53E-07	- 4.12 4.08 3.93 3.80	3.32E-02 1.57E-03 5.05E-05 3.33E-06 2.33E-07	4.40 4.95 3.92 3.84
50 100 200 400 800 <i>I</i> 50 100 200	3.79E-02 1.68E-03 6.45E-05 3.93E-06 2.82E-07 RK(6,5; ² / ₃) 1.87E-02 1.01E-03 5.07E-05	- 4.49 4.71 4.04 3.80 rate - 4.21 4.31	6.25E-02 5.85E-03 8.28E-05 7.21E-06 6.73E-07 RK(7,5;1) 1.66E-02 9.26E-04 4.95E-05	- 3.42 6.14 3.52 3.42 rate - 4.17 4.23	2.32E-02 1.30E-03 6.43E-05 4.56E-06 3.59E-07	- 4.16 4.33 3.82 3.67	2.20E-02 1.27E-03 7.49E-05 4.92E-06 3.53E-07	- 4.12 4.08 3.93 3.80	3.32E-02 1.57E-03 5.05E-05 3.33E-06 2.33E-07	- 4.40 4.95 3.92 3.84
50 100 200 400 800 <i>I</i> 50 100 200 400	3.79E-02 1.68E-03 6.45E-05 3.93E-06 2.82E-07 RK(6,5; $\frac{2}{3}$) 1.87E-02 1.01E-03 5.07E-05 3.27E-06	- 4.49 4.71 4.04 3.80 rate - 4.21 4.31 3.95	6.25E-02 5.85E-03 8.28E-05 7.21E-06 6.73E-07 RK(7,5;1) 1.66E-02 9.26E-04 4.95E-05 3.01E-06	- 3.42 6.14 3.52 3.42 rate - 4.17 4.23 4.04	2.32E-02 1.30E-03 6.43E-05 4.56E-06 3.59E-07	- 4.16 4.33 3.82 3.67	2.20E-02 1.27E-03 7.49E-05 4.92E-06 3.53E-07	- 4.12 4.08 3.93 3.80	3.32E-02 1.57E-03 5.05E-05 3.33E-06 2.33E-07	- 4.40 4.95 3.92 3.84

2D linear transport, \mathbb{P}_1 FE (3th-order super-convergent)

Table: Relative error in L^{∞} -norm, T = 0.5 at CFL = 0.2.

50 $1.81E-02$ - $2.20E-02$ - 100 $1.76E-03$ 3.37 $1.84E-03$ 3.58 200 $3.20E-04$ 2.46 $3.20E-04$ 2.52 400 $7.90E-05$ 2.02 $7.90E-05$ 2.02 800 $1.99E-05$ 1.99 $1.99E-05$ 1.99 <i>I</i> RK(3,3;1) rate RK [‡] (3,3; $\frac{1}{3})$ rate 50 $2.28E-02$ - $3.87E-02$ - 100 $1.13E-03$ 4.33 $2.64E-03$ 3.87 $1.14E-03$ 4.34 200 $4.54E-05$ 4.64 $6.85E-05$ 5.27 $4.81E-05$ 4.56 400 $2.49E-06$ 4.19 $2.01E-05$ 1.77 $2.10E-06$ 4.52 800 $4.09E-07$ 2.60 $5.29E-06$ 1.93 $1.09E-07$ 4.27	
100 1.76E-03 3.37 1.84E-03 3.58 200 3.20E-04 2.46 3.20E-04 2.52 400 7.90E-05 2.02 7.90E-05 2.02 800 1.99E-05 1.99 1.99E-05 1.99 1 RK(3,3;1) rate RK [‡] (3,3; ¹ / ₃) rate RK(4,3;1) rate 50 2.28E-02 - 3.87E-02 - 2.30E-02 - 100 1.13E-03 4.33 2.64E-03 3.87 1.14E-03 4.34 200 4.54E-05 4.64 6.85E-05 5.27 4.81E-05 4.56 400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52 800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
800 1.99E-05 1.99 1.99E-05 1.99 I RK(3,3;1) rate RK [‡] (3,3; $\frac{1}{3}) rate RK(4,3;1) rate 50 2.28E-02 - 3.87E-02 - 2.30E-02 - 100 1.13E-03 4.33 2.64E-03 3.87 1.14E-03 4.34 200 4.54E-05 4.64 6.85E-05 5.27 4.81E-05 4.56 400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52 800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27 $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
50 2.28E-02 - 3.87E-02 - 2.30E-02 - 100 1.13E-03 4.33 2.64E-03 3.87 1.14E-03 4.34 200 4.54E-05 4.64 6.85E-05 5.27 4.81E-05 4.56 400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52 800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27	
100 1.13E-03 4.33 2.64E-03 3.87 1.14E-03 4.34 200 4.54E-05 4.64 6.85E-05 5.27 4.81E-05 4.56 400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52 800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27	
200 4.54E-05 4.64 6.85E-05 5.27 4.81E-05 4.56 400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52 800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27	
400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52 800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27	
800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27	
$ I RK(4,4;\frac{1}{2})$ rate $RK(4,4;\frac{2}{4})$ rate $RK^+(5,4;\frac{1}{2})$ rate $RK(5,4;1)$ rate $RK(6,4;1)$ rate	te
50 2.68E-02 - 2.39E-02 - 2.43E-02 - 2.30E-02 - 2.32E-02 -	-
100 1.55E-03 4.11 1.17E-03 4.35 1.33E-03 4.19 1.14E-03 4.33 1.13E-03 4.3	36
200 4.98E-05 4.96 5.51E-05 4.41 5.18E-05 4.68 4.80E-05 4.57 4.70E-05 4.5	59
400 2.61E-06 4.25 1.37E-05 2.01 2.45E-06 4.40 2.30E-06 4.39 2.74E-06 4.3	10
800 4.37E-07 2.58 3.56E-06 1.94 2.78E-07 3.14 1.77E-07 3.70 7.04E-07 1.9	96
$I = RK(6,5;\frac{2}{3})$ rate $RK(7,5;1)$ rate	
50 2.41E-02 – 2.29E-02 –	
100 1.14E-03 4.40 1.14E-03 4.34	
200 4.65E-05 4.62 4.73E-05 4.59	
400 3.37E-06 3.78 2.51E-06 4.24	
800 9.76E-07 1.79 5.31E-07 2.24	

э

(日)

Linear transport with non-smooth solutions

Figure: Three solids problem at T = 1, using RK(2,2;1) at CFL = 0.25. 2D \mathbb{P}_1 finite elements on non-uniform meshes. From left to right: I = 6561; I = 24917; I = 98648; I = 389860.

イロト イポト イヨト イヨト

Linear transport with non-smooth solutions

Table: Three solids problem at T = 1 and CFL = 0.25. 2D \mathbb{P}_1 finite elements on non-uniform meshes. Relative error in the L^1 -norm for methods RK(2,2;1) and RK(4,3;1).

1	RK(2,2;1)	rate	RK(4,3;1)	rate
1605	2.45E-01	-	2.49E-01	-
6561	1.28E-01	0.93	1.31E-01	0.92
24917	7.34E-02	0.81	7.49E-02	0.84
98648	4.26E-02	0.78	4.44E-02	0.76
389860	2.44E-02	0.81	2.56E-02	0.80

э

2D Burgers' equation

2D Burgers' equation in $D := (-.25, 1.75)^2$:

 $\partial_t u + \nabla \cdot (\mathbf{f}(u)) = 0, \qquad \mathbf{f}(u) := \frac{1}{2} (u^2, u^2)^\mathsf{T}, \qquad u(\mathbf{x}, 0) = u_0(\mathbf{x}) \text{ a.e. } \mathbf{x} \in D,$

with the initial data

$$u_0(\mathbf{x}) := egin{cases} 1 & ext{if } |x_1 - rac{1}{2}| \leq 1 ext{ and } |x_2 - rac{1}{2}| \leq 1 \ -a & ext{otherwise.} \end{cases}$$

2D Burgers' equation

Table: Burgers' equation. 2D \mathbb{P}_1 finite elements on uniform meshes. T = 0.65 at CFL = 0.25. Relative error in the L^1 -norm for all the methods.

1	RK(2,2;1)	rate	$RK(2,2;\frac{1}{2})$	rate	RK(3,3;1)	rate	$RK(3,3;\frac{1}{3})$	rate	RK(4,3;1)	rate
51 ²	7.71E-02	-	7.79E-02	-	7.71E-02	-	8.03E-02	-	7.71E-02	-
101 ²	3.69E-02	1.06	3.73E-02	1.06	3.69E-02	1.06	3.85E-02	1.06	3.69E-02	1.06
201 ²	2.30E-02	0.68	2.32E-02	0.68	2.30E-02	0.68	2.38E-02	0.70	2.30E-02	0.68
401 ²	1.24E-02	0.90	1.24E-02	0.90	1.24E-02	0.90	1.27E-02	0.90	1.24E-02	0.90
801 ²	6.47E-03	0.93	6.52E-03	0.93	6.48E-03	0.93	6.65E-03	0.93	6.47E-03	0.93
1	RK(4,4; ¹ / ₂)	rate	$RK(4,4;\frac{3}{4})$	rate	RK(5,4;0.51)	rate	$RK(6,5;\frac{5}{6})$	rate	$RK(6,5;\frac{2}{3})$	rate
/ 51 ²	RK(4,4; ¹ / ₂) 7.94E-02	rate –	$RK(4,4;\frac{3}{4})$ 8.15E-02	rate —	RK(5,4;0.51) 7.79E-02	rate –	$RK(6,5;\frac{5}{6})$ 1.81E-01	rate –	RK(6,5; ² / ₃) 9.29E-02	rate –
/ 51 ² 101 ²	RK(4,4; ¹ / ₂) 7.94E-02 3.80E-02	rate - 1.06	RK(4,4; ³ / ₄) 8.15E-02 3.89E-02	rate - 1.07	RK(5,4;0.51) 7.79E-02 3.89E-02	rate - 1.00	RK(6,5; $\frac{5}{6}$) 1.81E-01 8.56E-02	rate - 1.08	RK(6,5; ² / ₃) 9.29E-02 4.39E-02	rate - 1.08
/ 51 ² 101 ² 201 ²	RK(4,4; ¹ / ₂) 7.94E-02 3.80E-02 2.36E-02	rate - 1.06 0.69	RK(4,4; ³ / ₄) 8.15E-02 3.89E-02 2.40E-02	rate - 1.07 0.70	RK(5,4;0.51) 7.79E-02 3.89E-02 2.47E-02	rate - 1.00 0.66	RK(6,5; $\frac{5}{6}$) 1.81E-01 8.56E-02 4.78E-02	rate - 1.08 0.84	RK(6,5; ² / ₃) 9.29E-02 4.39E-02 2.72E-02	rate - 1.08 0.69
/ 51 ² 101 ² 201 ² 401 ²	RK(4,4; ¹ / ₂) 7.94E-02 3.80E-02 2.36E-02 1.26E-02	rate - 1.06 0.69 0.90	RK(4,4; ³ / ₄) 8.15E-02 3.89E-02 2.40E-02 1.28E-02	rate - 1.07 0.70 0.90	RK(5,4;0.51) 7.79E-02 3.89E-02 2.47E-02 1.36E-02	rate - 1.00 0.66 0.86	RK(6,5; $\frac{5}{6}$) 1.81E-01 8.56E-02 4.78E-02 2.38E-02	rate - 1.08 0.84 1.00	RK(6,5; $\frac{2}{3}$) 9.29E-02 4.39E-02 2.72E-02 1.41E-02	rate - 1.08 0.69 0.95

Non-SSP methods converge as well as the SSP methods.

э

Outline

Introduction Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

IDPMEX

э

ヘロト 人間ト 人間ト 人間ト

 \blacktriangleright Let \mathbf{F}^{L} be low-order approximation of hyperbolic flux.

- ▶ Let **F**^L be low-order approximation of hyperbolic flux.
- Let G^{L,lin} be Low-order quasi-linearized approximation of parabolic flux plus sources (i.e., approximation of −∇·(g(u, ∇u)) + S(u)).

・ロト ・ 日本 ・ 日本 ・ 日本

- ▶ Let **F**^L be low-order approximation of hyperbolic flux.
- Let G^{L,lin} be Low-order quasi-linearized approximation of parabolic flux plus sources (i.e., approximation of −∇·(g(u, ∇u)) + S(u)).
- Consider the low-order update (IMEX Euler)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},n+1} = \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n} + \Delta t\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n}) + \Delta t\mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{L},n+1}).$$

э

・ ロ ト ・ 雪 ト ・ ヨ ト

- Assumption 1: (Forward Euler with low-order hyperbolic flux is invariant-domain preserving.) There exists Δt* > 0 such that:
 - For every $\Delta t \in (0, \Delta t^*]$, the low-order hyperbolic flux satisfies

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow(\mathbf{U}:=\mathbf{V}+\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{F}^{\mathsf{L}}(\mathbf{V})\in\mathcal{A}').$$

• (Backward Euler with low-order, linearized, parabolic flux is invariant-domain preserving.) For all $\Delta t \in (0, \Delta t^*]$ and all $\mathbf{W} \in \mathcal{A}^l$, the operator $\mathbb{I} - \Delta t (\mathbb{M}^L)^{-1} \mathbf{G}^{L,\text{lin}}(\mathbf{W}; \cdot) : (\mathbb{R}^m)^l \to (\mathbb{R}^m)^l$ is bijective and

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow\left((\mathbb{I}-\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{W};\cdot))^{-1}\mathbf{V}\in\mathcal{A}'
ight).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

- Assumption 1: (Forward Euler with low-order hyperbolic flux is invariant-domain preserving.) There exists Δt* > 0 such that:
 - For every $\Delta t \in (0, \Delta t^*]$, the low-order hyperbolic flux satisfies

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow(\mathbf{U}:=\mathbf{V}+\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{F}^{\mathsf{L}}(\mathbf{V})\in\mathcal{A}').$$

• (Backward Euler with low-order, linearized, parabolic flux is invariant-domain preserving.) For all $\Delta t \in (0, \Delta t^*]$ and all $\mathbf{W} \in \mathcal{A}^{l}$, the operator $\mathbb{I} - \Delta t(\mathbb{M}^L)^{-1} \mathbf{G}^{L,\text{lin}}(\mathbf{W}; \cdot) : (\mathbb{R}^m)^l \to (\mathbb{R}^m)^l$ is bijective and

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow\left((\mathbb{I}-\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{W};\cdot))^{-1}\mathbf{V}\in\mathcal{A}'\right).$$

Lemma (Low-order IDP Euler IMEX)

Let Assumption 1 hold. Assume that $\mathbf{U}^n \in \mathcal{A}^l$ and $\Delta t \in (0, \Delta t^*]$. Then, $\mathbf{U}^{L,n+1} \in \mathcal{A}^l$.

The high-order, linearized update (one Euler step)

► Assumption 2: There exists two nonlinear limiting operators ℓ^{hyp} , $\ell^{\text{par}}: \mathcal{A}^{I} \times (\mathbb{R}^{m})^{I} \times (\mathbb{R}^{m})^{I} \to (\mathbb{R}^{m})^{I}$ s.t. for all $(\mathbf{V}, \mathbf{\Phi}^{L}, \mathbf{\Phi}^{H}) \in \mathcal{A}^{I} \times (\mathbb{R}^{m})^{I} \times (\mathbb{R}^{m})^{I}$,

$$\begin{aligned} (\mathbf{V} + \Delta t(\mathbb{M}^{\mathsf{L}})^{-1} \mathbf{\Phi}^{\mathsf{L}} \in \mathcal{A}') &\Longrightarrow (\ell^{\mathsf{hyp}}(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}) \in \mathcal{A}'), \\ (\mathbf{V} + \Delta t(\mathbb{M}^{\mathsf{L}})^{-1} \mathbf{\Phi}^{\mathsf{L}} \in \mathcal{A}') &\Longrightarrow (\ell^{\mathsf{par}}(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}) \in \mathcal{A}'). \end{aligned}$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Important remark

The invariant domain enforced by the hyperbolic limiting operator can be smaller than that enforced the parabolic limiting operator.

Important remark

- The invariant domain enforced by the hyperbolic limiting operator can be smaller than that enforced the parabolic limiting operator.
- Bounds for limiting are deduced from the low-order updates (hyperbolic and parabolic bounds can be different).

Important remark

- The invariant domain enforced by the hyperbolic limiting operator can be smaller than that enforced the parabolic limiting operator.
- Bounds for limiting are deduced from the low-order updates (hyperbolic and parabolic bounds can be different).
- \blacktriangleright \Rightarrow the method is naturally asymptotic preserving.

• Given $\mathbf{U}^n \in \mathcal{A}^l$, the high-order update \mathbf{U}^{n+1} is constructed as follows:

◆日 > < 同 > < 国 > < 国 >

- ► Given Uⁿ ∈ A^I, the high-order update Uⁿ⁺¹ is constructed as follows:
- Step 1: Compute the low-order and high-order hyperbolic updates defined by

$$\mathbb{M}^{\mathsf{L}} \mathbf{W}^{\mathsf{L},n+1} := \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n} + \Delta t \mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n}), \\ \mathbb{M}^{\mathsf{H}} \mathbf{W}^{\mathsf{H},n+1} := \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n} + \Delta t \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n}).$$

э

◆日 > < 同 > < 国 > < 国 >

- ► Given Uⁿ ∈ A^I, the high-order update Uⁿ⁺¹ is constructed as follows:
- Step 1: Compute the low-order and high-order hyperbolic updates defined by

$$\mathbb{M}^{\mathsf{L}} \mathbf{W}^{\mathsf{L},n+1} := \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n} + \Delta t \mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n}), \\ \mathbb{M}^{\mathsf{H}} \mathbf{W}^{\mathsf{H},n+1} := \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n} + \Delta t \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n}).$$

Step 2: Compute the hyperbolic fluxes Φ^L , Φ^H (details given later) and limit

$$\mathbf{W}^{n+1} := \ell^{\mathsf{hyp}}(\mathbf{U}^n, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}).$$

Step 3: Compute the low-order and high-order parabolic updates defined by

$$\mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},n+1} - \Delta t \mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{L},n+1}) := \mathbb{M}^{\mathsf{L}} \mathbf{W}^{n+1},$$
$$\mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},n+1} - \Delta t \mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{H},n+1}) := \mathbb{M}^{\mathsf{H}} \mathbf{W}^{n+1},$$

A D > A P > A D > A D >

Step 3: Compute the low-order and high-order parabolic updates defined by

$$\begin{split} \mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},n+1} - \Delta t \mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{L},n+1}) &:= \mathbb{M}^{\mathsf{L}} \mathbf{W}^{n+1}, \\ \mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},n+1} - \Delta t \mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{H},n+1}) &:= \mathbb{M}^{\mathsf{H}} \mathbf{W}^{n+1}, \end{split}$$

Step 4: Compute the parabolic fluxes Ψ^L , Ψ^H (details given later) and limit

$$\boldsymbol{\mathsf{U}}^{n+1}:=\ell^{\mathsf{par}}(\boldsymbol{\mathsf{W}}^{n+1},\boldsymbol{\Psi}^{\mathsf{L}},\boldsymbol{\Psi}^{\mathsf{H}})$$

э

(1)

Step 3: Compute the low-order and high-order parabolic updates defined by

$$\begin{split} \mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},n+1} - \Delta t \mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{L},n+1}) &:= \mathbb{M}^{\mathsf{L}} \mathbf{W}^{n+1},\\ \mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},n+1} - \Delta t \mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{H},n+1}) &:= \mathbb{M}^{\mathsf{H}} \mathbf{W}^{n+1}, \end{split}$$

Step 4: Compute the parabolic fluxes Ψ^L , Ψ^H (details given later) and limit

$$\mathbf{U}^{n+1} := \ell^{\mathsf{par}}(\mathbf{W}^{n+1}, \mathbf{\Psi}^{\mathsf{L}}, \mathbf{\Psi}^{\mathsf{H}}).$$

Lemma (High-order IDP Euler IMEX)

Assume Assumptions 1 and 2. Assume that $\mathbf{U}^n \in \mathcal{A}^I$ and $\Delta t \in (0, \Delta t^*]$. Let \mathbf{U}^{n+1} be defined as above. Then $\mathbf{U}^{n+1} \in \mathcal{A}^I$.

▶ Key idea: Consider low-order and high-order updates and limit.

・ロト ・四ト ・ヨト ・ヨト

▶ Key idea: Consider low-order and high-order updates and limit.

▶ Set $\mathbf{U}(t^n) = \mathbf{U}^n$ (with the induction assumption $\mathbf{U}^n \in \mathcal{A}$)

▶ Key idea: Consider low-order and high-order updates and limit.

- ▶ Set $\mathbf{U}(t^n) = \mathbf{U}^n$ (with the induction assumption $\mathbf{U}^n \in \mathcal{A}$)
- ▶ For $t \in (t^n, t^{n+1})$ solve

$$\mathbb{M}^{\mathsf{L}}\partial_{t}\mathbf{U} = \underbrace{\mathbf{F}^{\mathsf{L}}(\mathbf{U})}_{Explicit} + \underbrace{\mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U})}_{Implicit},$$
$$\mathbb{M}^{\mathsf{H}}\partial_{t}\mathbf{U} = \underbrace{\mathbf{F}^{\mathsf{H}}(\mathbf{U}) + \mathbf{G}^{\mathsf{H}}(\mathbf{U}) - \mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U})}_{Explicit} + \underbrace{\mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U})}_{Implicit}.$$

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Explicit Butcher tableau

Implicit Butcher tableau

Hyperbolic update

For all
$$l \in \{2: s+1\}$$

Hyperbolic update

$$\mathbb{M}^{\mathsf{L}} \mathbf{W}^{\mathsf{L},l} := \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n,l'} + \Delta t (c_l - c_{l'}) \mathbf{F}^{\mathsf{L}} (\mathbf{U}^{n,l'}),$$
$$\mathbb{M}^{\mathsf{H}} \mathbf{W}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n,l'} + \Delta t \sum_{k \in \{1:l-1\}} (a_{l,k}^{\mathsf{e}} - a_{l',k}^{\mathsf{e}}) \mathbf{F}^{\mathsf{H}} (\mathbf{U}^{n,k}).$$

Hyperbolic update

$$\mathbb{M}^{\mathsf{L}} \mathbf{W}^{\mathsf{L},l} := \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n,l'} + \Delta t (c_l - c_{l'}) \mathbf{F}^{\mathsf{L}} (\mathbf{U}^{n,l'}),$$
$$\mathbb{M}^{\mathsf{H}} \mathbf{W}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n,l'} + \Delta t \sum_{k \in \{1:l-1\}} (a_{l,k}^{\mathsf{e}} - a_{l',k}^{\mathsf{e}}) \mathbf{F}^{\mathsf{H}} (\mathbf{U}^{n,k}).$$

► Use hyperbolic limiter $\mathbf{W}^{n,l} := \ell^{\text{hyp}}(\mathbf{U}^{\text{L},l}, \Phi^{\text{L}}, \Phi^{\text{H}}), \qquad \forall l \in \{2: s+1\}.$

ヘロト ヘ週ト ヘヨト ヘヨト

Parabolic update

For all
$$l \in \{2: s + 1\}$$

◆□ > ◆圖 > ◆臣 > ◆臣 >

Parabolic update

$$\begin{split} \mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},l} &:= \mathbb{M}^{\mathsf{L}} \mathbf{W}^{n,l'} + \Delta t (c_l - c_{l'}) \mathbf{G}^{\mathsf{L},\mathsf{lin}} (\mathbf{W}^{n,l'}; \mathbf{U}^{\mathsf{L},l}), \\ \mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},l} &:= \mathbb{M}^{\mathsf{H}} \mathbf{W}^{n,l'} + \Delta t a_{l,l}^{\mathsf{i}} \mathbf{G}^{\mathsf{H},\mathsf{lin}} (\mathbf{U}^{n}; \mathbf{U}^{\mathsf{H},l}) \\ &+ \sum_{k \in \{1:l-1\}} \Delta t \left\{ (a_{l,k}^{\mathsf{e}} - a_{l',k}^{\mathsf{e}}) \mathbf{G}^{\mathsf{H}} (\mathbf{U}^{n,k}) + (a_{l,k}^{\mathsf{i}} - a_{l',k}^{\mathsf{i}} - a_{l,k}^{\mathsf{e}} + a_{l',k}^{\mathsf{e}}) \mathbf{G}^{\mathsf{H},\mathsf{lin}} (\mathbf{U}^{n}; \mathbf{U}^{n,k}) \right\} \end{split}$$

► Notice
$$\Delta t(c_l - c_{l'}) > 0$$
, but $\Delta t a_{l,l}^i \ge 0$ (i.e., $a_{s+1,s+1}^i = 0$).

・ロト ・四ト ・ヨト ・ヨト

Parabolic update

$$\begin{split} \mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},l} &:= \mathbb{M}^{\mathsf{L}} \mathbf{W}^{n,l'} + \Delta t (c_l - c_{l'}) \mathbf{G}^{\mathsf{L},\mathsf{lin}} (\mathbf{W}^{n,l'}; \mathbf{U}^{\mathsf{L},l}), \\ \mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},l'} &:= \mathbb{M}^{\mathsf{H}} \mathbf{W}^{n,l'} + \Delta t a^{\mathsf{i}}_{l,l} \mathbf{G}^{\mathsf{H},\mathsf{lin}} (\mathbf{U}^{n}; \mathbf{U}^{\mathsf{H},l}) \\ &+ \sum_{k \in \{1:l-1\}} \Delta t \left\{ (a^{\mathsf{e}}_{l,k} - a^{\mathsf{e}}_{l',k}) \mathbf{G}^{\mathsf{H}} (\mathbf{U}^{n,k}) + (a^{\mathsf{i}}_{l,k} - a^{\mathsf{i}}_{l',k} - a^{\mathsf{e}}_{l,k} + a^{\mathsf{e}}_{l',k}) \mathbf{G}^{\mathsf{H},\mathsf{lin}} (\mathbf{U}^{n}; \mathbf{U}^{n,k}) \right\} \end{split}$$

► Notice
$$\Delta t(c_l - c_{l'}) > 0$$
, but $\Delta t a_{l,l}^i \ge 0$ (i.e., $a_{s+1,s+1}^i = 0$).

Use hyperbolic limiter

$$\mathbf{U}^{n+1}:=\ell^{\mathsf{hyp}}(\mathbf{W}^{\mathsf{L},\mathit{l}},\Psi^{\mathsf{L}},\Psi^{\mathsf{H}}),\qquad\forall \mathit{l}\in\{2{:}\,\mathit{s}+1\}.$$

イロト イヨト イヨト イヨト

Key result

Theorem (*s*-stage IDP-IMEX) Assume Assumptions 1 and 2 and

$$\Delta t c_{\mathsf{eff}} \leq \Delta t^*, \qquad c_{\mathsf{eff}} := \max_{l \in \{2:\, s+1\}} (c_l - c_{l'})$$

If $\mathbf{U}^n \in \mathcal{A}^I$, then $\mathbf{U}^{n+1} \in \mathcal{A}^I$.

・ロト ・四ト ・ヨト ・ヨト

Example: Second-order

Heun's method + Crank-Nicolson:

0	0			0	0	
1	1	0		1	$\frac{1}{2}$	$\frac{1}{2}$
1	$\frac{1}{2}$	$\frac{1}{2}$	-	1	$\frac{1}{2}$	$\frac{1}{2}$

▶ l' = l - 1 for all $l \in \{2:3\}$, and the efficiency ratio is $\frac{1}{2}$.

æ

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶
Example: Second-order

Explicit and implicit midpoint rules.

0	0			0	0	
$\frac{1}{2}$	$\frac{1}{2}$	0		$\frac{1}{2}$	0	$\frac{1}{2}$
1	0	1	-	1	0	1

▶ l' = l - 1 for all $l \in \{2:3\}$, and the efficiency ratio is 1.

・ロト ・四ト ・ヨト ・ヨト

Strang's splitting

ヘロト 人間ト 人間ト 人間ト

- Strang's splitting
- Explicit midpoint rule for the two hyperbolic solves and implicit midpoint rule for the parabolic solve.

- Strang's splitting
- Explicit midpoint rule for the two hyperbolic solves and implicit midpoint rule for the parabolic solve.
- The whole process can be rewritten as a five-stage IMEX scheme with the following Butcher tableaux

イロト イポト イヨト イヨト

- Strang's splitting
- Explicit midpoint rule for the two hyperbolic solves and implicit midpoint rule for the parabolic solve.
- The whole process can be rewritten as a five-stage IMEX scheme with the following Butcher tableaux

0	0						0	0				
$\frac{1}{4}$	$\frac{1}{4}$	0					$\frac{1}{4}$	0	0			
$\frac{1}{2}$	0	$\frac{1}{2}$	0				1	0	0	$\frac{1}{2}$		
$\frac{1}{2}$	0	$\frac{1}{2}$	0	0			$\frac{1}{2}$	0	0	$\frac{1}{1}$	0	
$\frac{2}{3}{4}$	0	$\frac{1}{2}$	0	$\frac{1}{4}$	0		$\frac{2}{3}$	0	0	1	0	0
1	0	$\frac{1}{2}$	0	0	$\frac{1}{2}$	-	1	0	0	1	0	0

I' = (1,2,2,4,5) but the efficiency ratio is 1 because stages 3 and 4 do not require new function evaluations.

Example: Third-order

 Two-stage, third-order (A-stable) SDIRK method Crouzeix (1975), Norsett (1974)

• with
$$\gamma := \frac{1}{2} + \frac{1}{2\sqrt{3}} \approx 0.78867.$$

The values for l' are (1, 1, 2). The efficiency ratio is $\frac{1}{3}\gamma \approx 0.26$.

ヘロト ヘヨト ヘヨト ヘヨト

Example: New Third-order AE, JLG (2022)

► Three-stage, third-order

• With
$$\gamma := \frac{1}{2} + \frac{1}{2\sqrt{3}} \approx 0.78867.$$

We have l' = l − 1 for all l ∈ {2:4}, and the method is optimal (efficiency is 1).

3

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Example: New Third-order AE, JLG (2022)

Three-stage, third-order

• With
$$\gamma := \frac{1}{2} + \frac{1}{2\sqrt{3}} \approx 0.78867.$$

We have l' = l − 1 for all l ∈ {2:4}, and the method is optimal (efficiency is 1).

Lemma

- The amplification function for Crouzeix's method and the new method are identical.
- The implicit method is A-stable.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Example: New four stages, third-order, AE, JLG (2022)

► Four-stages, third-order.

æ

(日)

Example: New four stages, third-order, AE, JLG (2022)

► Four-stages, third-order.

э

(日)

Example: New four stages, third-order, AE, JLG (2022)

► Four-stages, third-order.

- Implicit part is L-stable.
- We have l' = l − 1 for all l ∈ {2:5}, and the method is optimal (efficiency is 1).

э

(日)

Example: New five stages, fourth-order, AE, JLG (2022)

Five-stages, fourth-order.

$$\begin{array}{ll} a^{e}_{2,1}=&0.2\\ a^{e}_{3,1}=&0.2607558226955500 & a^{e}_{3,2}=0.1392441773044501\\ a^{e}_{4,1}=&-0.2585651787257025 & a^{e}_{4,2}=0.9113627416628056 & a^{e}_{4,3}=-0.0527975629371033\\ a^{e}_{5,1}=&0.2162327643150383 & a^{e}_{5,2}=0.5153422309960234 & a^{e}_{5,3}=-0.8166279419926541\\ & a^{e}_{5,4}=&0.8850529466815924 \end{array}$$

Example: New five stages, fourth-order, AE, JLG (2022)

Five-stages, fourth-order.

$$\begin{array}{lll} a^{e}_{2,1} = & 0.2 \\ a^{e}_{3,1} = & 0.2607558226955500 & a^{e}_{3,2} = 0.1392441773044501 \\ a^{e}_{4,1} = -0.2585651787257025 & a^{e}_{4,2} = 0.9113627416628056 & a^{e}_{4,3} = -0.0527975629371033 \\ a^{e}_{5,1} = & 0.2162327643150383 & a^{e}_{5,2} = 0.5153422309960234 & a^{e}_{5,3} = -0.8166279419926541 \\ & a^{e}_{5,4} = & 0.8850529466815924 \end{array}$$

Example: New five stages, fourth-order, AE, JLG (2022)

Five-stages, fourth-order.

- Implicit part is L-stable.
- We have l' = l − 1 for all l ∈ {2:6}, and the method is optimal (efficiency is 1).

• The definition of $\mathbf{G}^{L,lin}$ is problem-dependent.

For scalar equation with source S(u) = µφ(u)u(1 − u), the following low-order linearization is explicit and IDP for all µ ≥ 0

$$\mathsf{S}_i^{\mathsf{L},\mathsf{lin}}(\mathsf{U}^n,\cdot) = m_i \Delta t^{-1} \left(\frac{u e^{\Delta t \mu \phi(\mathsf{U}_i^n)}}{1 + u(e^{\Delta t \mu \phi(\mathsf{U}_i^n)} - 1)} - u \right).$$

- The definition of $\mathbf{G}^{L,lin}$ is problem-dependent.
 - For scalar equation with source S(u) = µφ(u)u(1 − u), the following low-order linearization is explicit and IDP for all µ ≥ 0

$$\mathsf{S}_{i}^{\mathsf{L},\mathsf{lin}}(\mathsf{U}^{n},\cdot)=m_{i}\Delta t^{-1}\left(\frac{ue^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}}{1+u(e^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}-1)}-u\right).$$

IMEX setting allows for the hyperbolic problem and the parabolic problem to be solved with their natural set of variables (when done properly).

- The definition of $\mathbf{G}^{L,lin}$ is problem-dependent.
 - For scalar equation with source S(u) = µφ(u)u(1 − u), the following low-order linearization is explicit and IDP for all µ ≥ 0

$$\mathsf{S}_{i}^{\mathsf{L},\mathsf{lin}}(\mathsf{U}^{n},\cdot)=m_{i}\Delta t^{-1}\left(\frac{ue^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}}{1+u(e^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}-1)}-u\right).$$

- IMEX setting allows for the hyperbolic problem and the parabolic problem to be solved with their natural set of variables (when done properly).
- The invariant domains for the hyperbolic problem and the parabolic problem can be different.

- ► The definition of **G**^{L,lin} is problem-dependent.
 - For scalar equation with source $S(u) = \mu \phi(u)u(1-u)$, the following low-order linearization is explicit and IDP for all $\mu \ge 0$

$$\mathsf{S}_{i}^{\mathsf{L},\mathsf{lin}}(\mathsf{U}^{n},\cdot)=m_{i}\Delta t^{-1}\left(\frac{ue^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}}{1+u(e^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}-1)}-u\right).$$

- IMEX setting allows for the hyperbolic problem and the parabolic problem to be solved with their natural set of variables (when done properly).
- The invariant domains for the hyperbolic problem and the parabolic problem can be different.
- Conservation

- The definition of $\mathbf{G}^{L,lin}$ is problem-dependent.
 - For scalar equation with source S(u) = µφ(u)u(1 − u), the following low-order linearization is explicit and IDP for all µ ≥ 0

$$\mathsf{S}_{i}^{\mathsf{L},\mathsf{lin}}(\mathsf{U}^{n},\cdot)=m_{i}\Delta t^{-1}\left(\frac{ue^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}}{1+u(e^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}-1)}-u\right).$$

- IMEX setting allows for the hyperbolic problem and the parabolic problem to be solved with their natural set of variables (when done properly).
- The invariant domains for the hyperbolic problem and the parabolic problem can be different.

Conservation

 Limiting done with the Flux Transport Correction technique Zalezak (1979) if the constraints are not affine

- The definition of $\mathbf{G}^{L,lin}$ is problem-dependent.
 - For scalar equation with source S(u) = µφ(u)u(1 − u), the following low-order linearization is explicit and IDP for all µ ≥ 0

$$\mathsf{S}_{i}^{\mathsf{L},\mathsf{lin}}(\mathsf{U}^{n},\cdot)=m_{i}\Delta t^{-1}\left(\frac{ue^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}}{1+u(e^{\Delta t\mu\phi(\mathsf{U}_{i}^{n})}-1)}-u\right).$$

- IMEX setting allows for the hyperbolic problem and the parabolic problem to be solved with their natural set of variables (when done properly).
- The invariant domains for the hyperbolic problem and the parabolic problem can be different.
- Conservation
- Limiting done with the Flux Transport Correction technique Zalezak (1979) if the constraints are not affine
- Limiting done with convex limiting (Guermond, Popov, Tomas (2019)) if the constraints are not affine.

Conclusions

 Every ERK and IMEX methods can be made invariant-domain preserving.

