
New perpective on time stepping techniques:
Beyond strong stability.

J.-L. Guermond

Department of Mathematics
Texas A&M University

Séminaire d’analyse numérique
CEA DAM Ile de France,

Bruyères le Châtel, June 7th, 2022

Collaborators and acknowledgments
This work done in collaboration with:

I Alexandre Ern (École Nationale des Ponts & Chaussées, Paris,
France)

Other collaborators

I Bennett Clayton (TAMU, TX)

I Martin Kronbichler (Uppsala, Sweden)

I Matthias Maier (TAMU, TX)

I Murtazo Nazarov (Uppsala, Sweden)

I B. Popov (TAMU, TX)

I Laura Saavedra (Universidad Politécnica de Madrid)

I Madison Sheridan (TAMU, TX)

I Ignacio Tomas (SANDIA, NM)

I Eric Tovar (LANL, NM)

Support:

Outline

Introduction

Introduction
Invariant domains
Problems with SSP time stepping
Invariant-domain-preserving Explict Runge-Kutta
Numerical illustrations
Invariant-domain-preserving IMEX

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Cauchy problem

I Cauchy problem

∂tu +∇·(f(u) + g(u,∇u)) = S(u), (x, t) ∈ D×R+.

u(x, 0) = u0(x), x ∈ D.

I D open polyhedral domain in Rd .

I Field u takes values in Rm; that is, u : D×R+ → Rm

I f ∈ C1(Rm;Rm×d), the hyperbolic flux.

I g ∈ C1(Rm×Rm×d ;Rm×d), the diffusive/parabolic flux.

I S ∈ C1(Rm;Rm×d), source.

I u0, admissible initial data.

I Periodic BCs or u0 has compact support (to simplify BCs)

Example 0: Scalar advection-diffusion-reaction

I Find u so that

∂tu +∇·
(
f(x, u)− κ(u)∇u

)
− S(u) = 0, u(·, 0) = u0(·),

I For instance

S(u) := µφ(u)u(1− u), with φ(u) ∈ C 0([0, 1]; [−1, 1]), µ ≥ 0.

I Fluxes

f(u) :=

{
f(u)

βx with ∇·β = 0

g(u,∇u) := κ(u)∇u.

Example 0: Scalar advection-diffusion-reaction

I Find u so that

∂tu +∇·
(
f(x, u)− κ(u)∇u

)
− S(u) = 0, u(·, 0) = u0(·),

I For instance

S(u) := µφ(u)u(1− u), with φ(u) ∈ C 0([0, 1]; [−1, 1]), µ ≥ 0.

I Fluxes

f(u) :=

{
f(u)

βx with ∇·β = 0

g(u,∇u) := κ(u)∇u.

Example 0: Scalar advection-diffusion-reaction

I Find u so that

∂tu +∇·
(
f(x, u)− κ(u)∇u

)
− S(u) = 0, u(·, 0) = u0(·),

I For instance

S(u) := µφ(u)u(1− u), with φ(u) ∈ C 0([0, 1]; [−1, 1]), µ ≥ 0.

I Fluxes

f(u) :=

{
f(u)

βx with ∇·β = 0

g(u,∇u) := κ(u)∇u.

Example 1: Navier-Stokes

I Find u := (ρ,m,E)T so that

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + p(u)I− s(v)) = 0,

∂tE +∇·(v(E + p(u))− s(v)·v + q(u)) = 0,

with v := m/ρ: velocity; p(u): pressure.

I Fluxes

f(u) :=

 vρ
v ⊗m + p(u)I
v(E + p(u))

 , g(u,∇u) :=

 0
−s(v)

−s(v)·v + q(u)

 .

I Possible definitions for s and q:

s(v) = 2µe(v) + (λ− 2
3µ)(∇·v)I, q(u) = −κ∇e(u).

Example 1: Navier-Stokes

I Find u := (ρ,m,E)T so that

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + p(u)I− s(v)) = 0,

∂tE +∇·(v(E + p(u))− s(v)·v + q(u)) = 0,

with v := m/ρ: velocity; p(u): pressure.

I Fluxes

f(u) :=

 vρ
v ⊗m + p(u)I
v(E + p(u))

 , g(u,∇u) :=

 0
−s(v)

−s(v)·v + q(u)

 .

I Possible definitions for s and q:

s(v) = 2µe(v) + (λ− 2
3µ)(∇·v)I, q(u) = −κ∇e(u).

Example 1: Navier-Stokes

I Find u := (ρ,m,E)T so that

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + p(u)I− s(v)) = 0,

∂tE +∇·(v(E + p(u))− s(v)·v + q(u)) = 0,

with v := m/ρ: velocity; p(u): pressure.

I Fluxes

f(u) :=

 vρ
v ⊗m + p(u)I
v(E + p(u))

 , g(u,∇u) :=

 0
−s(v)

−s(v)·v + q(u)

 .

I Possible definitions for s and q:

s(v) = 2µe(v) + (λ− 2
3µ)(∇·v)I, q(u) = −κ∇e(u).

Example 2: Gray radiation hydrodynamics

I Find u := (ρ,m,E , ER)T so that

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + (p(u) + pR(ER))I) = 0,

∂tE +∇·(v(E + p(u) + pR(ER)))−∇·(c
3σt
∇ER) = 0,

∂tER +∇·(v(ER + pR(ER)))− v·∇pR(ER)−∇·(c
3σt
∇ER) = σac(aRT

4 − ER),

with ER: radiation energy; pR(ER): radiation pressure; T (u):
temperature;

c : speed of light; σa, σt: absorption and total cross sections; aR := 4σ
c

radiation constant; σ the Stefan–Boltzmann constant.

I Possible definitions:

pR(ER) :=
1

3
ER; cvT = e(u) := 1

ρ (E − 1
2ρv2).

Example 2: Gray radiation hydrodynamics

I Find u := (ρ,m,E , ER)T so that

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + (p(u) + pR(ER))I) = 0,

∂tE +∇·(v(E + p(u) + pR(ER)))−∇·(c
3σt
∇ER) = 0,

∂tER +∇·(v(ER + pR(ER)))− v·∇pR(ER)−∇·(c
3σt
∇ER) = σac(aRT

4 − ER),

with ER: radiation energy; pR(ER): radiation pressure; T (u):
temperature;

c : speed of light; σa, σt: absorption and total cross sections; aR := 4σ
c

radiation constant; σ the Stefan–Boltzmann constant.

I Possible definitions:

pR(ER) :=
1

3
ER; cvT = e(u) := 1

ρ (E − 1
2ρv2).

Example 2: Gray radiation hydrodynamics

I Find u := (ρ,m,E , ER)T so that

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + (p(u) + pR(ER))I) = 0,

∂tE +∇·(v(E + p(u) + pR(ER)))−∇·(c
3σt
∇ER) = 0,

∂tER +∇·(v(ER + pR(ER)))− v·∇pR(ER)−∇·(c
3σt
∇ER) = σac(aRT

4 − ER),

with ER: radiation energy; pR(ER): radiation pressure; T (u):
temperature;

c : speed of light; σa, σt: absorption and total cross sections; aR := 4σ
c

radiation constant; σ the Stefan–Boltzmann constant.

I Possible definitions:

pR(ER) :=
1

3
ER; cvT = e(u) := 1

ρ (E − 1
2ρv2).

Outline

Invariant domains

Introduction
Invariant domains
Problems with SSP time stepping
Invariant-domain-preserving Explict Runge-Kutta
Numerical illustrations
Invariant-domain-preserving IMEX

Key assumption: existence of an invariant domain

I Let u0 ∈ D.

I There exists a set A (Rm, convex and depending on u0, so that the
“entropy” solution takes values in A for a.e. x ∈ D and t > 0.

(u0(x) ∈ A,∀x ∈ D) =⇒ (u(x, t) ∈ A,∀x ∈ D,∀t > 0) .

I This is a generalization of the maximum principle.

Examples

I Scalar conservation equations without reaction

A := [ess inf
x∈R

u0(x), ess sup
x∈R

u0(x)] is a convex subset of R

I Scalar conservation equations with S(u) := µφ(u)u(1− u),

A := [0, 1] is a convex subset of R

Examples

I Scalar conservation equations without reaction

A := [ess inf
x∈R

u0(x), ess sup
x∈R

u0(x)] is a convex subset of R

I Scalar conservation equations with S(u) := µφ(u)u(1− u),

A := [0, 1] is a convex subset of R

Examples

I Euler equations with specific entropy s

A := {u := (ρ,m,E) ∈ Rd+2 | ρ > 0,E − 1

2

m2

ρ
> 0, s(u) ≥ ess inf

x∈D
s(u0)}

I Euler equations with Nobel Abel stiffen gas equation of state

A := {u := (ρ,m,E) ∈ Rd+2 | ρ > 0,

1

1− bρ
(E − 1

2

m2

ρ
− q)− p∞ > 0, s(u) ≥ ess inf

x∈D
s(u0)}

Examples

I Navier-Stokes equations

A := {(ρ,m,E) ∈ Rd+2 | ρ > 0,E − 1

2

m2

ρ
> 0}

I A is convex in both cases.

I Invariant domain for the Euler equations is smaller than that for the
Navier-Stokes equations.

Questions

I Hyperbolic and parabolic operators may have conflicting constraints.

Questions

I Example 1: Navier-Stokes
I Euler: Conserved variables are natural for solving the hyperbolic

problem
I Navier-Stokes: primitive variables (velocity, internal energy) are more

appropriate for the parabolic part.
I The invariant domain of the Euler part is smaller than the invariant

domain of the parabolic part.

Questions

I Example 2: Gray radiation hydrodynamics

I Euler: Conserved variables (ρ,m,E , E
3
4
R)T.

I Parabolic part: (T , ER)T.
I The invariant domain of the Euler part is smaller than the invariant

domain of the parabolic part.

Questions

I How can one reconcile all these constraints?

I How can one construct approximation techniques in time and space
that preserve invariant domains?

I Terminology: approximation methods that preserve invariant
domains are called Invariant domain preserving (IDP)

Outline

SSP

Introduction
Invariant domains
Problems with SSP time stepping
Invariant-domain-preserving Explict Runge-Kutta
Numerical illustrations
Invariant-domain-preserving IMEX

SSP (strong stability preserving)

I Approximate u(x, t) in space with dofs in Rm×I .

I I : dimension of the approximation vector space (Finite elements (C 0

or dG), Finite Volume, Finite Differences, etc.).

I Let F : Rm×I → Rm×I be approximation in space of −∇·f(u).
(The way this is done does not matter here.)

I Semi-discrete problem: Find U ∈ C 1([0,T];Rm×I) s.t.

M∂tU = F(U), U(0) = U0.

M : mass matrix (invertible)

SSP (strong stability preserving)

I Assume U0 ∈ AI .

I How can one construct time-stepping technique that guarantee
Un ∈ AI , for all n ≥ 0?

SSP (strong stability preserving)

I Assume U0 ∈ AI .

I How can one construct time-stepping technique that guarantee
Un ∈ AI , for all n ≥ 0?

SSP (strong stability preserving)

I Key idea by Shu&Osher (1988)

Use explicit Runge-Kutta methods where the final update is
a convex combination of updates computed with the forward
Euler method.

I Key assumption: (Forward Euler with low-order flux is
invariant-domain preserving.) ∃∆t∗ > 0 s.t. ∀∆t ∈ (0,∆t∗) and
∀V ∈ Rm×I

(V ∈ AI) =⇒ (V + ∆t(M)−1F(V) ∈ AI).

⇔ AI is invariant by the forward Euler method under the CFL
condition ∆t ∈ (0,∆t∗).

SSP (strong stability preserving)

I Key idea by Shu&Osher (1988)

Use explicit Runge-Kutta methods where the final update is
a convex combination of updates computed with the forward
Euler method.

I Key assumption: (Forward Euler with low-order flux is
invariant-domain preserving.) ∃∆t∗ > 0 s.t. ∀∆t ∈ (0,∆t∗) and
∀V ∈ Rm×I

(V ∈ AI) =⇒ (V + ∆t(M)−1F(V) ∈ AI).

⇔ AI is invariant by the forward Euler method under the CFL
condition ∆t ∈ (0,∆t∗).

SSP (strong stability preserving)

I Theory well understood now:
I Kraaijevanger (1991),
I Spiteri-Ruuth (2002),
I Ferracina-Spijker (2005),
I Higueras (2005).

Examples (for ∂tu = L(t, u))

I SSPRK(2,2)

α β γ

1 1 0
1
2

1
2 0 1

2 1

w (1) := un + ∆tL(tn, u
n),

w (2) := 1
2u

n + 1
2

(
w (1) + ∆tL(tn + ∆t,w (1))

)
,

Examples (for ∂tu = L(t, u))

I SSPRK(3,3)

α β γ

1 1 0
3
4

1
4 0 1

4 1
1
3 0 2

3 0 0 2
3

1
2

w (1) := un + ∆tL(tn, u
n),

w (2) := 3
4u

n + 1
4 (w (1) + ∆tL

(
tn + ∆t,w (1))

)
,

w (3) := 1
3u

n + 2
3 (w (2) + ∆tL

(
tn + 1

2 ∆t,w (2))
)
,

Examples (for ∂tu = L(t, u))

I SSPRK(4,3)

α β γ

1 1
2 0

0 1 0 1
2

1
2

2
3 0 1

3 0 0 1
6 1

0 0 0 1 0 0 0 1
2

1
2

w (1) := un + 1
2 ∆tL(tn, u

n),

w (2) := w (1) + 1
2 ∆tL(tn + 1

2 ∆t,w (1)),

w (3) := 2
3u

n + 1
3

(
w (2) + 1

2 ∆tL(tn + ∆t,w (2))
)
,

w (4) := w (3) + 1
2 ∆tL(tn + 1

2 ∆t,w (3)),

Problems with SPPRK: Efficiency

Definition (Efficiency ratio)

I Let τ∗ maximal time step that makes the forward Euler method IDP.

I Let τ̃ be the maximal time step that makes some s-stage ERK
method IDP as well.

I We call efficiency ratio of the s-stage ERK method the ratio

ceff := ∆̃t
s∆t∗ . (Usually ceff ≤ 1.)

Proposition
Under the same CFL constraint, the number of flux evaluations of
SSPRK (s, p) is equal to 1

ceff
× that of the forward Euler method.

Problems with SPPRK: Efficiency

Examples

I ceff = 1
2 for SSPRK(2,2).

I ceff = 1
3 for SSPRK(3,3).

I ceff = 1
2 for SSPRK(4,3).

Problems with SPPRK: Efficiency

I SSPRK methods are usually inefficient!

I The most popular method SSPRK (3, 3) is actually one of the most
inefficient!

Some optimal methods

I Four-stages, third-order, AE, JLG (2022).

0 0
1
4

1
4

0
1
2

0 1
2

0
3
4

0 1
4

1
2

1 0 2
3

− 1
3

2
3

I Five-stages, fourth-order, AE, JLG (2022).
0 0
1
5 0.2
2
5 0.2607558226955500 0.1392441773044501
3
5 −0.2585651787257025 0.9113627416628056 −0.0527975629371033
4
5 0.2162327643150383 0.5153422309960234 −0.8166279419926541 0.8850529466815924

1 −0.1051167845469190 0.8788004715210083 −0.5890340406148447 0.4621338048543404 0.3532165487864149

Problems with SPPRK: Accuracy

I Accuracy of SSPRK methods restricted to fourth-order if one insists
on never stepping backward in time, Ruuth, Spiteri (2002).

Problems with SPPRK: extensions to IMEX methods

I The SSPRK paradigm cannot be easily modified to accommodate
implicit and explicit sub-steps.

I Implicit RK schemes of order 2 and above cannot be SSP, Gottlieb,
Shu, Tadmor (2001)

I Some alternatives:
I SSP Explicit methods ⇒ Parabolic time step restriction ∆t ≤ ch2;

see Zhang & Shu (2017)
I Using two derivatives Gottlieb, Grant, Hu, Shu (2022)

Problems with SPPRK: extensions to IMEX methods

Example (Compressible Navier-Stokes)

I Difficulties: conflicting invariant sets and conflicting variables.

I Which invariant domain to preserve?
I Minimum entropy principle is true for Euler.
I Minimum entropy principle is false for NS.

I Which variable should be used?
I “Right variable” for Euler is u = (ρ,m,E) (conserved variables).
I “Right variable” for NS is (ρ, v, e) (primitive variables).
I Some advocate “entropy variable” and “entropy stability”. Why?

I How to do the explicit-implicit time stepping?

I How linearization should be done in the implicit substeps?
I Most“IMEX” methods cannot make the difference between

conserved and primitive variables.
I Most“IMEX” methods cannot be properly linearized and be

conservative (no generic theory).

Problems with SPPRK: extensions to IMEX methods

I Conclusion: One needs a new paradigm.

Outline

IDPERK

Introduction
Invariant domains
Problems with SSP time stepping
Invariant-domain-preserving Explict Runge-Kutta
Numerical illustrations
Invariant-domain-preserving IMEX

Peep under the hood of SSPRK

I The beauty of SSPRK methods is that the forward Euler sub-step is
a black box.

I The black box invokes two fluxes (not just one as one might think):
I Low-order (in space) FL, low-order mass matrix ML

I High-order (in space) FH, low-order mass matrix MH

I Ideally, one would like to solve

MH∂tU = FH(U)

since the space approximation is accurate, but this method violates
the invariant-domain property.

Peep under the hood of SSPRK

Key assumptions

I Assumption 1: (Forward Euler with low-order flux is
invariant-domain preserving.) Assume ∃∆t∗ > 0 so that for all
∆t ∈ (0,∆t∗) for all V ∈ Rm×I

(V ∈ AI) =⇒ (V + ∆t(ML)−1FL(V) ∈ AI).

Peep under the hood of SSPRK

Key assumptions

I Assumption 2: There exists a nonlinear limiting operator
` : AI × (Rm)I × (Rm)I → (Rm)I such that for all (V,ΦL,ΦH)

(V + ∆t(ML)−1ΦL ∈ AI) =⇒ (`(V,ΦL,ΦH) ∈ AI).

I Key idea: `(V,ΦL,ΦH) is defined as convex combination of
V + ∆t(ML)−1ΦH and V + ∆t(ML)−1ΦL.

Peep under the hood of SSPRK

Key assumptions

I Assumption 2: There exists a nonlinear limiting operator
` : AI × (Rm)I × (Rm)I → (Rm)I such that for all (V,ΦL,ΦH)

(V + ∆t(ML)−1ΦL ∈ AI) =⇒ (`(V,ΦL,ΦH) ∈ AI).

I Key idea: `(V,ΦL,ΦH) is defined as convex combination of
V + ∆t(ML)−1ΦH and V + ∆t(ML)−1ΦL.

Peep under the hood of SSPRK

I Given Un in the invariant set AI (approximation at time tn),

I The forward Euler step proceeds as follows:
I Compute low-order flux FL(Un)
I Compute high-order flux FH(Un)
I Compute update Un+1 by limiting

Un+1 := `(Un,FL(Un),FH(Un)).

Theorem (IDP Explicit Euler)
Let Assumptions 1 and 2 be met. Assume Un ∈ AI , then Un+1 ∈ AI for
all ∆t ∈ (0,∆t∗).

Key idea of invariant-domain-preserving ERK

I Externalize the limiting process at each RK sub-step.

Details for s-stage ERK method

I Consider Butcher tableau for s-stage method

c1 0
c2 a2,1 0
c3 a3,1 a3,2 0
...

...
.

cs as,1 as,2 · · · as,s−1 0
b1 b2 · · · bs−1 bs

I Rename last line, set c1 = 0 and cs+1 = 1.

0 0
c2 a2,1 0
c3 a3,1 a3,2 0
...

...
.

cs as,1 as,2 · · · as,s−1 0
1 as+1,1 as+1,2 · · · as+1,s−1 as+1,s

Details

I Assume ck ≥ 0 for all k ∈ {1:s + 1}.
I For sake of simplicity assume cl−1 ≤ cl , ∀l ∈ {2:s + 1}, and set

l ′(l) := l − 1.

(Otherwise set l ′(l) := max{k < l | cl − ck ≥ 0}.)

Details
I Let Un ∈ AI .

I Set Un,1 := Un.

I Loop over l ∈ {2:s + 1}.
I Compute first-order update starting from Un,l′ (think of l ′ = l − 1)

MLUL,l := MLUn,l′ + ∆t(cl − cl′)FL(Un,l′).

I Compute high-order ERK update starting from Un

MHUH,l := MHUn + ∆t
∑

k∈{1: l−1}

al,kFH(Un,k).

I Incompatibility of the starting points (Un,l′ 6= Un in general).

I Subtract ERK update at tn + cl∆t from ERK update at tn + cl′∆t

=⇒ MHUH,l = MHUH,l′ + ∆t
∑

k∈{1: l−1}

(al,k − al′,k)FH(Un,k).

Details
I Let Un ∈ AI .

I Set Un,1 := Un.

I Loop over l ∈ {2:s + 1}.
I Compute first-order update starting from Un,l′ (think of l ′ = l − 1)

MLUL,l := MLUn,l′ + ∆t(cl − cl′)FL(Un,l′).

I Compute high-order ERK update starting from Un

MHUH,l := MHUn + ∆t
∑

k∈{1: l−1}

al,kFH(Un,k).

I Incompatibility of the starting points (Un,l′ 6= Un in general).

I Subtract ERK update at tn + cl∆t from ERK update at tn + cl′∆t

=⇒ MHUH,l = MHUH,l′ + ∆t
∑

k∈{1: l−1}

(al,k − al′,k)FH(Un,k).

Details
I Let Un ∈ AI .

I Set Un,1 := Un.

I Loop over l ∈ {2:s + 1}.
I Compute first-order update starting from Un,l′ (think of l ′ = l − 1)

MLUL,l := MLUn,l′ + ∆t(cl − cl′)FL(Un,l′).

I Compute high-order ERK update starting from Un

MHUH,l := MHUn + ∆t
∑

k∈{1: l−1}

al,kFH(Un,k).

I Incompatibility of the starting points (Un,l′ 6= Un in general).

I Subtract ERK update at tn + cl∆t from ERK update at tn + cl′∆t

=⇒ MHUH,l = MHUH,l′ + ∆t
∑

k∈{1: l−1}

(al,k − al′,k)FH(Un,k).

Details

I Replace UH,l′ (which is not IDP) by Un,l′ (which is IDP by induction
assumption).

I Final scheme

MLUL,l := MLUn,l′ + ∆t (cl − cl′)FL(Un,l′)︸ ︷︷ ︸
ΦL

.

MHUH,l := MHUn,l′ + ∆t
∑

k∈{1: l−1}

(al,k − al′,k)FH(Un,k)

︸ ︷︷ ︸
ΦH

.

Un,l := `(Un,l′ ,ΦL,ΦH).

I Set Un+1 := Un,s+1.

Details

Theorem
Assume that Un ∈ AI . Then Un+1 ∈ AI for all
∆t ∈ (0, ∆t∗

maxl∈{2: s+1}(cl−cl′)
).

Corollary

I cef = 1
s maxl∈{2: s+1}(cl−cl′)

.

I The complexity of the ERK method is optimal if the points
{cl}l∈{1: s+1} are equi-distributed in [0, 1].

Outline

Numerical
illustrations

Introduction
Invariant domains
Problems with SSP time stepping
Invariant-domain-preserving Explict Runge-Kutta
Numerical illustrations
Invariant-domain-preserving IMEX

Examples (optimal methods)

0 0
1
2

1
2 0

1 0 1

RK(2,2;1)

0 0
1
3

1
3 0

2
3 0 2

3 0

1 1
4 0 3

4

RK(3,3;1)

0 0
1
4

1
4 0

1
2 0 1

2 0
3
4 0 1

4
1
2 0

1 0 2
3 − 1

3
2
3

RK(4,3;1)

Examples SSPRK (sub-optimal methods)

0 0

1 1 0
1
2

1
2

SSPRK(2,2; 1
2)

0 0

1 1 0
1
2

1
4

1
4 0

1
6

1
6

2
3

SSPRK(3,3; 1
3)

Examples: popular RK4 (left) and 3/8 rule (right)

0 0
1
2

1
2 0

1
2 0 1

2 0

1 0 0 1 0

1 1
6

2
6

2
6

1
6

RK(4,4; 1
2)

0 0
1
3

1
3 0

2
3 − 1

3 1 0

1 1 −1 1 0

1 1
8

3
8

3
8

1
8

RK(4,4; 3
4)

Examples RK5 methods: Equi-distributed (left), Butcher’s
method (right)

0 0
1
5

1
5 0

2
5 0 2

5 0
3
5

3
20 0 9

20 0
4
5

4
5 − 8

5
8
5 0 0

1 − 71
4 40 − 75

4 −10 15
2 0

1 17
144 0 25

36 − 25
72

25
48

1
72

RK(6,5; 5
6)

0 0
1
4

1
4 0

1
4

1
8

1
8 0

1
2 0 − 1

2 1 0
3
4

3
16 0 0 9

16 0

1 − 3
7

2
7

12
7 − 12

7
8
7 0

1 7
90 0 32

90
12
90

32
90

7
90

RK(6,5; 2
3)

Convergence tests

I All the tests are done with

∆t := CFL×s×∆t∗,

I ⇒ All the methods perform exactly the same number of time steps
independently of s (i.e., number of flux evaluations is constant).

1D linear transport, 4th-order FD

I 4th-order FD in space.

I Linear transport D = (0, 1)

∂tu+∂xu = 0, u0(x) :=

{
(4 (x−x0)(x1−x)

x1−x0
)6 x ∈ (x0 := 0.1, x1 := 0.4)

0 otherwise

I Local maximum/minimum principle guaranteed at every grid point.

I Global maximum and minimum also exactly enforced.

I All errors computed in L∞-norm.

1D linear transport, 4th-order FD

Table: Second-order methods (SSPRK(2,2) behaves badly).

I
50

100
200
400
800

1600
3200

CFL = 0.2
RK(2,2;1) rate RK(2,2; 1

2) rate
4.72E-02 – 1.23E-01 –
2.81E-03 4.07 1.50E-02 3.03
1.16E-03 1.28 1.24E-03 3.60
3.38E-04 1.78 3.47E-04 1.84
8.79E-05 1.94 9.28E-05 1.90
2.22E-05 1.98 2.33E-05 1.99
5.58E-06 1.99 5.92E-06 1.98

CFL = 0.25
RK(2,2;1) rate RK(2,2; 1

2) rate
4.91E-02 – 1.30E-01 –
4.51E-03 3.44 4.32E-02 1.60
2.01E-03 1.17 2.14E-03 4.34
5.41E-04 1.89 5.67E-04 1.91
1.38E-04 1.97 1.48E-04 1.94
3.47E-05 1.99 3.78E-05 1.97
8.73E-06 1.99 5.36E-05 -.50

1D linear transport, 4th-order FD

Table: Third-order methods (SSPRK(3,3) behaves badly).

I
50

100
200
400
800

1600
3200

CFL = 0.05
RK(3,3;1) rate RK(3,3; 1

3) rate RK(4,3;1) rate
5.15E-02 – 4.76E-02 – 5.15E-02 –
5.41E-03 3.25 5.41E-03 3.14 5.41E-03 3.25
3.79E-04 3.83 3.79E-04 3.83 3.79E-04 3.83
2.27E-05 4.06 2.27E-05 4.06 2.27E-05 4.06
1.58E-06 3.85 1.58E-06 3.85 1.58E-06 3.85
9.12E-08 4.12 1.22E-07 3.69 8.13E-08 4.28
1.52E-08 2.58 6.84E-08 0.84 5.31E-09 3.94

CFL = 0.25
RK(3,3;1) rate RK(3,3; 1

3) rate RK(4,3;1) rate
5.48E-02 – 1.55E-01 – 6.08E-02 –
5.15E-03 3.41 6.12E-02 1.35 6.15E-03 3.31
3.92E-04 3.72 1.07E-03 5.84 3.83E-04 4.01
2.89E-05 3.76 2.18E-04 2.29 2.30E-05 4.06
3.20E-06 3.18 6.41E-05 1.77 1.59E-06 3.85
8.23E-07 1.96 1.83E-05 1.81 8.25E-08 4.27
2.40E-07 1.78 5.39E-06 1.76 5.39E-09 3.94

1D linear transport, 4th-order FD

Table: Fourth-order methods (SSPRK(5,4) behaves badly).

CFL = 0.05 CFL = 0.2

I RK(4,4; 1
2) rate RK‡(5,4; 1

2) rate RK(5,4;1) rate RK(4,4; 1
2) rate RK‡(5,4; 1

2) rate RK(5,4;1) rate
50 4.32E-02 – 5.37E-02 – 5.95E-02 – 1.26E-01 – 5.63E-02 – 5.55E-02 –

100 5.41E-03 3.00 5.09E-03 3.40 5.09E-03 3.54 1.65E-02 2.93 7.82E-03 2.85 5.72E-03 3.28
200 3.79E-04 3.84 3.04E-04 4.07 3.04E-04 4.07 4.10E-04 5.33 3.80E-04 4.36 3.82E-04 3.90
400 2.27E-05 4.06 1.91E-05 3.99 1.91E-05 3.99 5.02E-05 3.03 2.27E-05 4.06 2.29E-05 4.06
800 1.58E-06 3.85 1.19E-06 4.00 1.19E-06 4.00 1.10E-05 2.19 1.79E-06 3.67 1.60E-06 3.84

1600 8.13E-08 4.28 7.45E-08 4.00 7.45E-08 4.00 2.70E-06 2.03 3.66E-07 2.29 8.26E-08 4.28
3200 5.36E-09 3.92 4.65E-09 4.00 4.65E-09 4.00 7.69E-07 1.81 9.29E-08 1.98 5.38E-09 3.94

1D linear transport, 4th-order FD

Table: Fifth-order methods, error in the L∞-norm.

CFL = 0.02 CFL = 0.025
I RK(6,5; 1

3) rate RK(7,5;1) rate RK(6,5; 2
3) rate RK(7,5;1) rate

50 5.19E-02 – 5.19E-02 – 5.19E-02 – 5.19E-02 –
100 5.41E-03 3.26 5.41E-03 3.26 5.41E-03 3.26 5.41E-03 3.26
200 3.79E-04 3.83 3.79E-04 3.83 3.79E-04 3.84 3.79E-04 3.83
400 2.27E-05 4.06 2.27E-05 4.06 2.27E-05 4.06 2.27E-05 4.06
800 1.58E-06 3.85 1.58E-06 3.85 1.58E-06 3.85 1.58E-06 3.85

1600 8.48E-08 4.22 8.13E-08 4.28 8.71E-08 4.18 8.13E-08 4.28
3200 7.10E-09 3.58 5.92E-09 3.78 1.16E-08 2.91 5.56E-09 3.87

2D linear transport, P1 FE (3th-order super-convergent)

I P1 finite elements in space (4th-order super-convergence on uniform
meshes).

I Linear transport D := (0, 1)2 with β := (0.9, 1)T

∂tu+∇·(βu) = 0, u0(x) :=

{
(4 (x−x0)(x1−x)

x1−x0
)4×(4 (y−y0)(y1−y)

y1−y0
)4 x ∈ D0

0 oth.

with D0{x0 ≤ x ≤ x1, y0 ≤ y ≤ y1}, x0 = y0 = 0.1, x1 = y1 = 0.4.

I Local maximum/minimum principle guaranteed at every grid point.

I Global maximum and minimum also exactly enforced.

I All errors computed at T = 0.5

2D linear transport, P1 FE (4th-order super-convergent)

Table: Relative error L1-norm, T = 0.5. CFL = 0.4, second-order; CFL = 0.7
third-order; CFL = 0.5 fourth-order; CFL = 0.4 fifth-order.

I RK(2,1;1) rate RK‡(2,2; 1
2) rate

50 2.96E-02 – 3.91E-02 –
100 7.36E-03 2.01 7.47E-03 2.39
200 1.94E-03 1.93 1.94E-03 1.95
400 4.89E-04 1.99 4.89E-04 1.99
800 1.23E-04 1.99 1.26E-04 1.95

I RK(3,3;1) rate RK‡(3,3; 1
3) rate RK(4,3;1) rate

50 2.80E-02 – 6.48E-02 – 2.40E-02 –
100 3.31E-03 3.08 6.81E-03 3.25 1.48E-03 4.02
200 4.11E-04 3.01 4.23E-04 4.01 8.48E-05 4.13
400 5.15E-05 3.00 5.33E-05 2.99 5.37E-06 3.98
800 6.42E-06 3.00 6.63E-06 3.01 3.57E-07 3.91

I RK(4,4; 1
2) rate RK(4,4; 3

4) rate RK‡(5,4; 1
2) rate RK(5,4;1) rate RK(6,4;1) rate

50 3.79E-02 – 6.25E-02 – 2.32E-02 – 2.20E-02 – 3.32E-02 –
100 1.68E-03 4.49 5.85E-03 3.42 1.30E-03 4.16 1.27E-03 4.12 1.57E-03 4.40
200 6.45E-05 4.71 8.28E-05 6.14 6.43E-05 4.33 7.49E-05 4.08 5.05E-05 4.95
400 3.93E-06 4.04 7.21E-06 3.52 4.56E-06 3.82 4.92E-06 3.93 3.33E-06 3.92
800 2.82E-07 3.80 6.73E-07 3.42 3.59E-07 3.67 3.53E-07 3.80 2.33E-07 3.84

I RK(6,5; 2
3) rate RK(7,5;1) rate

50 1.87E-02 – 1.66E-02 –
100 1.01E-03 4.21 9.26E-04 4.17
200 5.07E-05 4.31 4.95E-05 4.23
400 3.27E-06 3.95 3.01E-06 4.04
800 2.37E-07 3.79 1.92E-07 3.97

2D linear transport, P1 FE (3th-order super-convergent)

Table: Relative error in L∞-norm, T = 0.5 at CFL = 0.2.

I RK(2,1;1) rate RK‡(2,2; 1
2) rate

50 1.81E-02 – 2.20E-02 –
100 1.76E-03 3.37 1.84E-03 3.58
200 3.20E-04 2.46 3.20E-04 2.52
400 7.90E-05 2.02 7.90E-05 2.02
800 1.99E-05 1.99 1.99E-05 1.99

I RK(3,3;1) rate RK‡(3,3; 1
3) rate RK(4,3;1) rate

50 2.28E-02 – 3.87E-02 – 2.30E-02 –
100 1.13E-03 4.33 2.64E-03 3.87 1.14E-03 4.34
200 4.54E-05 4.64 6.85E-05 5.27 4.81E-05 4.56
400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52
800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27

I RK(4,4; 1
2) rate RK(4,4; 3

4) rate RK‡(5,4; 1
2) rate RK(5,4;1) rate RK(6,4;1) rate

50 2.68E-02 – 2.39E-02 – 2.43E-02 – 2.30E-02 – 2.32E-02 –
100 1.55E-03 4.11 1.17E-03 4.35 1.33E-03 4.19 1.14E-03 4.33 1.13E-03 4.36
200 4.98E-05 4.96 5.51E-05 4.41 5.18E-05 4.68 4.80E-05 4.57 4.70E-05 4.59
400 2.61E-06 4.25 1.37E-05 2.01 2.45E-06 4.40 2.30E-06 4.39 2.74E-06 4.10
800 4.37E-07 2.58 3.56E-06 1.94 2.78E-07 3.14 1.77E-07 3.70 7.04E-07 1.96

I RK(6,5; 2
3) rate RK(7,5;1) rate

50 2.41E-02 – 2.29E-02 –
100 1.14E-03 4.40 1.14E-03 4.34
200 4.65E-05 4.62 4.73E-05 4.59
400 3.37E-06 3.78 2.51E-06 4.24
800 9.76E-07 1.79 5.31E-07 2.24

Linear transport with non-smooth solutions

Figure: Three solids problem at T = 1, using RK(2,2;1) at CFL = 0.25. 2D P1

finite elements on non-uniform meshes. From left to right: I = 6561;
I = 24917; I = 98648; I = 389860.

Linear transport with non-smooth solutions

Table: Three solids problem at T = 1 and CFL = 0.25. 2D P1 finite elements
on non-uniform meshes. Relative error in the L1-norm for methods RK(2,2;1)
and RK(4,3;1).

I RK(2,2;1) rate RK(4,3;1) rate
1605 2.45E-01 – 2.49E-01 –
6561 1.28E-01 0.93 1.31E-01 0.92

24917 7.34E-02 0.81 7.49E-02 0.84
98648 4.26E-02 0.78 4.44E-02 0.76

389860 2.44E-02 0.81 2.56E-02 0.80

2D Burgers’ equation

2D Burgers’ equation in D := (−.25, 1.75)2:

∂tu+∇·(f(u)) = 0, f(u) := 1
2 (u2, u2)T, u(x, 0) = u0(x) a.e. x ∈ D,

with the initial data

u0(x) :=

{
1 if |x1 − 1

2 | ≤ 1 and |x2 − 1
2 | ≤ 1

−a otherwise.

2D Burgers’ equation

Table: Burgers’ equation. 2D P1 finite elements on uniform meshes. T = 0.65
at CFL = 0.25. Relative error in the L1-norm for all the methods.

I RK(2,2;1) rate RK(2,2; 1
2) rate RK(3,3;1) rate RK(3,3; 1

3) rate RK(4,3;1) rate

512 7.71E-02 – 7.79E-02 – 7.71E-02 – 8.03E-02 – 7.71E-02 –

1012 3.69E-02 1.06 3.73E-02 1.06 3.69E-02 1.06 3.85E-02 1.06 3.69E-02 1.06

2012 2.30E-02 0.68 2.32E-02 0.68 2.30E-02 0.68 2.38E-02 0.70 2.30E-02 0.68

4012 1.24E-02 0.90 1.24E-02 0.90 1.24E-02 0.90 1.27E-02 0.90 1.24E-02 0.90

8012 6.47E-03 0.93 6.52E-03 0.93 6.48E-03 0.93 6.65E-03 0.93 6.47E-03 0.93

I RK(4,4; 1
2) rate RK(4,4; 3

4) rate RK(5,4;0.51) rate RK(6,5; 5
6) rate RK(6,5; 2

3) rate

512 7.94E-02 – 8.15E-02 – 7.79E-02 – 1.81E-01 – 9.29E-02 –

1012 3.80E-02 1.06 3.89E-02 1.07 3.89E-02 1.00 8.56E-02 1.08 4.39E-02 1.08

2012 2.36E-02 0.69 2.40E-02 0.70 2.47E-02 0.66 4.78E-02 0.84 2.72E-02 0.69

4012 1.26E-02 0.90 1.28E-02 0.90 1.36E-02 0.86 2.38E-02 1.00 1.41E-02 0.95

8012 6.61E-03 0.93 6.72E-03 0.94 7.11E-03 0.93 1.22E-02 0.97 7.24E-03 0.96

I Non-SSP methods converge as well as the SSP methods.

Outline

IDPMEX

Introduction
Invariant domains
Problems with SSP time stepping
Invariant-domain-preserving Explict Runge-Kutta
Numerical illustrations
Invariant-domain-preserving IMEX

The low-order, linearized update

I Let FL be low-order approximation of hyperbolic flux.

I Let GL,lin be Low-order quasi-linearized approximation of parabolic
flux plus sources (i.e., approximation of −∇·(g(u,∇u)) + S(u)).

I Consider the low-order update (IMEX Euler)

MLUL,n+1 = MLUn + ∆tFL(Un) + ∆tGL,lin(Un; UL,n+1).

The low-order, linearized update

I Let FL be low-order approximation of hyperbolic flux.

I Let GL,lin be Low-order quasi-linearized approximation of parabolic
flux plus sources (i.e., approximation of −∇·(g(u,∇u)) + S(u)).

I Consider the low-order update (IMEX Euler)

MLUL,n+1 = MLUn + ∆tFL(Un) + ∆tGL,lin(Un; UL,n+1).

The low-order, linearized update

I Let FL be low-order approximation of hyperbolic flux.

I Let GL,lin be Low-order quasi-linearized approximation of parabolic
flux plus sources (i.e., approximation of −∇·(g(u,∇u)) + S(u)).

I Consider the low-order update (IMEX Euler)

MLUL,n+1 = MLUn + ∆tFL(Un) + ∆tGL,lin(Un; UL,n+1).

The low-order, linearized update

I Assumption 1: (Forward Euler with low-order hyperbolic flux is
invariant-domain preserving.) There exists ∆t∗ > 0 such that:
I For every ∆t ∈ (0,∆t∗], the low-order hyperbolic flux satisfies

(V ∈ AI) =⇒ (U := V + ∆t(ML)−1FL(V) ∈ AI).

I (Backward Euler with low-order, linearized, parabolic flux is
invariant-domain preserving.) For all ∆t ∈ (0,∆t∗] and all W ∈ AI ,
the operator I−∆t(ML)−1GL,lin(W; ·) : (Rm)I → (Rm)I is bijective
and

(V ∈ AI) =⇒
(

(I−∆t(ML)−1GL,lin(W; ·))−1V ∈ AI
)
.

Lemma (Low-order IDP Euler IMEX)
Let Assumption 1 hold. Assume that Un ∈ AI and ∆t ∈ (0,∆t∗]. Then,
UL,n+1 ∈ AI .

The low-order, linearized update

I Assumption 1: (Forward Euler with low-order hyperbolic flux is
invariant-domain preserving.) There exists ∆t∗ > 0 such that:
I For every ∆t ∈ (0,∆t∗], the low-order hyperbolic flux satisfies

(V ∈ AI) =⇒ (U := V + ∆t(ML)−1FL(V) ∈ AI).

I (Backward Euler with low-order, linearized, parabolic flux is
invariant-domain preserving.) For all ∆t ∈ (0,∆t∗] and all W ∈ AI ,
the operator I−∆t(ML)−1GL,lin(W; ·) : (Rm)I → (Rm)I is bijective
and

(V ∈ AI) =⇒
(

(I−∆t(ML)−1GL,lin(W; ·))−1V ∈ AI
)
.

Lemma (Low-order IDP Euler IMEX)
Let Assumption 1 hold. Assume that Un ∈ AI and ∆t ∈ (0,∆t∗]. Then,
UL,n+1 ∈ AI .

The high-order, linearized update (one Euler step)

I Assumption 2: There exists two nonlinear limiting operators `hyp,
`par : AI×(Rm)I×(Rm)I → (Rm)I s.t. for all
(V,ΦL,ΦH) ∈ AI×(Rm)I×(Rm)I ,

(V + ∆t(ML)−1ΦL ∈ AI) =⇒ (`hyp(V,ΦL,ΦH) ∈ AI),

(V + ∆t(ML)−1ΦL ∈ AI) =⇒ (`par(V,ΦL,ΦH) ∈ AI).

Important remark

I The invariant domain enforced by the hyperbolic limiting operator
can be smaller than that enforced the parabolic limiting operator.

I Bounds for limiting are deduced from the low-order updates
(hyperbolic and parabolic bounds can be different).

I ⇒ the method is naturally asymptotic preserving.

Important remark

I The invariant domain enforced by the hyperbolic limiting operator
can be smaller than that enforced the parabolic limiting operator.

I Bounds for limiting are deduced from the low-order updates
(hyperbolic and parabolic bounds can be different).

I ⇒ the method is naturally asymptotic preserving.

Important remark

I The invariant domain enforced by the hyperbolic limiting operator
can be smaller than that enforced the parabolic limiting operator.

I Bounds for limiting are deduced from the low-order updates
(hyperbolic and parabolic bounds can be different).

I ⇒ the method is naturally asymptotic preserving.

The high-order update (one Euler step)

I Given Un ∈ AI , the high-order update Un+1 is constructed as
follows:

I Step 1: Compute the low-order and high-order hyperbolic updates
defined by

MLWL,n+1 := MLUn + ∆tFL(Un),

MHWH,n+1 := MHUn + ∆tFH(Un).

I Step 2: Compute the hyperbolic fluxes ΦL, ΦH (details given later)
and limit

Wn+1 := `hyp(Un,ΦL,ΦH).

The high-order update (one Euler step)

I Given Un ∈ AI , the high-order update Un+1 is constructed as
follows:

I Step 1: Compute the low-order and high-order hyperbolic updates
defined by

MLWL,n+1 := MLUn + ∆tFL(Un),

MHWH,n+1 := MHUn + ∆tFH(Un).

I Step 2: Compute the hyperbolic fluxes ΦL, ΦH (details given later)
and limit

Wn+1 := `hyp(Un,ΦL,ΦH).

The high-order update (one Euler step)

I Given Un ∈ AI , the high-order update Un+1 is constructed as
follows:

I Step 1: Compute the low-order and high-order hyperbolic updates
defined by

MLWL,n+1 := MLUn + ∆tFL(Un),

MHWH,n+1 := MHUn + ∆tFH(Un).

I Step 2: Compute the hyperbolic fluxes ΦL, ΦH (details given later)
and limit

Wn+1 := `hyp(Un,ΦL,ΦH).

The high-order update (one Euler step)

I Step 3: Compute the low-order and high-order parabolic updates
defined by

MLUL,n+1 −∆tGL,lin(Un; UL,n+1) := MLWn+1,

MHUH,n+1 −∆tGH,lin(Un; UH,n+1) := MHWn+1,

I Step 4: Compute the parabolic fluxes ΨL, ΨH (details given later)
and limit

Un+1 := `par(Wn+1,ΨL,ΨH).

Lemma (High-order IDP Euler IMEX)
Assume Assumptions 1 and 2. Assume that Un ∈ AI and ∆t ∈ (0,∆t∗].
Let Un+1 be defined as above. Then Un+1 ∈ AI .

The high-order update (one Euler step)

I Step 3: Compute the low-order and high-order parabolic updates
defined by

MLUL,n+1 −∆tGL,lin(Un; UL,n+1) := MLWn+1,

MHUH,n+1 −∆tGH,lin(Un; UH,n+1) := MHWn+1,

I Step 4: Compute the parabolic fluxes ΨL, ΨH (details given later)
and limit

Un+1 := `par(Wn+1,ΨL,ΨH).

Lemma (High-order IDP Euler IMEX)
Assume Assumptions 1 and 2. Assume that Un ∈ AI and ∆t ∈ (0,∆t∗].
Let Un+1 be defined as above. Then Un+1 ∈ AI .

The high-order update (one Euler step)

I Step 3: Compute the low-order and high-order parabolic updates
defined by

MLUL,n+1 −∆tGL,lin(Un; UL,n+1) := MLWn+1,

MHUH,n+1 −∆tGH,lin(Un; UH,n+1) := MHWn+1,

I Step 4: Compute the parabolic fluxes ΨL, ΨH (details given later)
and limit

Un+1 := `par(Wn+1,ΨL,ΨH).

Lemma (High-order IDP Euler IMEX)
Assume Assumptions 1 and 2. Assume that Un ∈ AI and ∆t ∈ (0,∆t∗].
Let Un+1 be defined as above. Then Un+1 ∈ AI .

The high-order update (IMEX)

I Key idea: Consider low-order and high-order updates and limit.

I Set U(tn) = Un (with the induction assumption Un ∈ A)

I For t ∈ (tn, tn+1) solve

ML∂tU = FL(U)︸ ︷︷ ︸
Explicit

+ GH,lin(Un; U)︸ ︷︷ ︸
Implicit

,

MH∂tU = FH(U) + GH(U)− GH,lin(Un; U)︸ ︷︷ ︸
Explicit

+ GH,lin(Un; U)︸ ︷︷ ︸
Implicit

.

The high-order update (IMEX)

I Key idea: Consider low-order and high-order updates and limit.

I Set U(tn) = Un (with the induction assumption Un ∈ A)

I For t ∈ (tn, tn+1) solve

ML∂tU = FL(U)︸ ︷︷ ︸
Explicit

+ GH,lin(Un; U)︸ ︷︷ ︸
Implicit

,

MH∂tU = FH(U) + GH(U)− GH,lin(Un; U)︸ ︷︷ ︸
Explicit

+ GH,lin(Un; U)︸ ︷︷ ︸
Implicit

.

The high-order update (IMEX)

I Key idea: Consider low-order and high-order updates and limit.

I Set U(tn) = Un (with the induction assumption Un ∈ A)

I For t ∈ (tn, tn+1) solve

ML∂tU = FL(U)︸ ︷︷ ︸
Explicit

+ GH,lin(Un; U)︸ ︷︷ ︸
Implicit

,

MH∂tU = FH(U) + GH(U)− GH,lin(Un; U)︸ ︷︷ ︸
Explicit

+ GH,lin(Un; U)︸ ︷︷ ︸
Implicit

.

The high-order update (IMEX)

I Explicit Butcher tableau

0 0
c2 ae

2,1 0
c3 ae

3,1 ae
3,2 0

...
...

. . .
. . .

. . .

cs ae
s,1 ae

s,2 · · · ae
s,s−1 0

1 ae
1+1,1 ae

s+1,2 · · · ae
s+1,s−1 ae

s+1,s

I Implicit Butcher tableau

0 0
c2 ai

2,1 ai
2,2

c3 ai
3,1 ai

3,2 ai
3,3

...
...

. . .
. . .

. . .

cs ai
s,1 ai

s,2 · · · ai
s,s−1 ai

s,s

1 ai
s+1,1 ai

s+1,2 · · · ai
s+1,s−1 ai

s+1,s

Hyperbolic update

I For all l ∈ {2:s + 1}

I Compute WL,l and WH,l

MLWL,l := MLUn,l′ + ∆t(cl − cl′)FL(Un,l′),

MHWH,l := MHUn,l′ + ∆t
∑

k∈{1: l−1}

(ae
l,k − ae

l′,k)FH(Un,k).

I Use hyperbolic limiter

Wn,l := `hyp(UL,l ,ΦL,ΦH), ∀l ∈ {2:s + 1}.

Hyperbolic update

I For all l ∈ {2:s + 1}
I Compute WL,l and WH,l

MLWL,l := MLUn,l′ + ∆t(cl − cl′)FL(Un,l′),

MHWH,l := MHUn,l′ + ∆t
∑

k∈{1: l−1}

(ae
l,k − ae

l′,k)FH(Un,k).

I Use hyperbolic limiter

Wn,l := `hyp(UL,l ,ΦL,ΦH), ∀l ∈ {2:s + 1}.

Hyperbolic update

I For all l ∈ {2:s + 1}
I Compute WL,l and WH,l

MLWL,l := MLUn,l′ + ∆t(cl − cl′)FL(Un,l′),

MHWH,l := MHUn,l′ + ∆t
∑

k∈{1: l−1}

(ae
l,k − ae

l′,k)FH(Un,k).

I Use hyperbolic limiter

Wn,l := `hyp(UL,l ,ΦL,ΦH), ∀l ∈ {2:s + 1}.

Parabolic update

I For all l ∈ {2:s + 1}

I Compute UL,l and UH,l

MLUL,l := MLWn,l′ + ∆t(cl − cl′)GL,lin(Wn,l′ ; UL,l),

MHUH,l := MHWn,l′ + ∆tai
l,lG

H,lin(Un; UH,l)

+
∑

k∈{1: l−1}

∆t
{

(ae
l,k − ae

l′,k)GH(Un,k) + (ai
l,k − ai

l′,k − ae
l,k + ae

l′,k)GH,lin(Un; Un,k)
}
.

I Notice ∆t(cl − cl′) > 0, but ∆tai
l,l ≥ 0 (i.e., ai

s+1,s+1 = 0).

I Use hyperbolic limiter

Un+1 := `hyp(WL,l ,ΨL,ΨH), ∀l ∈ {2:s + 1}.

Parabolic update

I For all l ∈ {2:s + 1}
I Compute UL,l and UH,l

MLUL,l := MLWn,l′ + ∆t(cl − cl′)GL,lin(Wn,l′ ; UL,l),

MHUH,l := MHWn,l′ + ∆tai
l,lG

H,lin(Un; UH,l)

+
∑

k∈{1: l−1}

∆t
{

(ae
l,k − ae

l′,k)GH(Un,k) + (ai
l,k − ai

l′,k − ae
l,k + ae

l′,k)GH,lin(Un; Un,k)
}
.

I Notice ∆t(cl − cl′) > 0, but ∆tai
l,l ≥ 0 (i.e., ai

s+1,s+1 = 0).

I Use hyperbolic limiter

Un+1 := `hyp(WL,l ,ΨL,ΨH), ∀l ∈ {2:s + 1}.

Parabolic update

I For all l ∈ {2:s + 1}
I Compute UL,l and UH,l

MLUL,l := MLWn,l′ + ∆t(cl − cl′)GL,lin(Wn,l′ ; UL,l),

MHUH,l := MHWn,l′ + ∆tai
l,lG

H,lin(Un; UH,l)

+
∑

k∈{1: l−1}

∆t
{

(ae
l,k − ae

l′,k)GH(Un,k) + (ai
l,k − ai

l′,k − ae
l,k + ae

l′,k)GH,lin(Un; Un,k)
}
.

I Notice ∆t(cl − cl′) > 0, but ∆tai
l,l ≥ 0 (i.e., ai

s+1,s+1 = 0).

I Use hyperbolic limiter

Un+1 := `hyp(WL,l ,ΨL,ΨH), ∀l ∈ {2:s + 1}.

Key result

Theorem (s-stage IDP-IMEX)
Assume Assumptions 1 and 2 and

∆tceff ≤ ∆t∗, ceff := max
l∈{2: s+1}

(cl − cl′)

If Un ∈ AI , then Un+1 ∈ AI .

Example: Second-order

I Heun’s method + Crank-Nicolson:

0 0
1 1 0

1 1
2

1
2

0 0
1 1

2
1
2

1 1
2

1
2

I l ′ = l − 1 for all l ∈ {2:3}, and the efficiency ratio is 1
2 .

Example: Second-order

I Explicit and implicit midpoint rules.

0 0
1
2

1
2 0

1 0 1

0 0
1
2 0 1

2

1 0 1

I l ′ = l − 1 for all l ∈ {2:3}, and the efficiency ratio is 1.

Example: Second-order, Strang splitting

I Strang’s splitting

I Explicit midpoint rule for the two hyperbolic solves and implicit
midpoint rule for the parabolic solve.

I The whole process can be rewritten as a five-stage IMEX scheme
with the following Butcher tableaux

0 0
1
4

1
4 0

1
2 0 1

2 0
1
2 0 1

2 0 0
3
4 0 1

2 0 1
4 0

1 0 1
2 0 0 1

2

0 0
1
4 0 0
1
2 0 0 1

2
1
2 0 0 1 0
3
4 0 0 1 0 0

1 0 0 1 0 0

I l ′ = (1, 2, 2, 4, 5) but the efficiency ratio is 1 because stages 3 and 4
do not require new function evaluations.

Example: Second-order, Strang splitting

I Strang’s splitting

I Explicit midpoint rule for the two hyperbolic solves and implicit
midpoint rule for the parabolic solve.

I The whole process can be rewritten as a five-stage IMEX scheme
with the following Butcher tableaux

0 0
1
4

1
4 0

1
2 0 1

2 0
1
2 0 1

2 0 0
3
4 0 1

2 0 1
4 0

1 0 1
2 0 0 1

2

0 0
1
4 0 0
1
2 0 0 1

2
1
2 0 0 1 0
3
4 0 0 1 0 0

1 0 0 1 0 0

I l ′ = (1, 2, 2, 4, 5) but the efficiency ratio is 1 because stages 3 and 4
do not require new function evaluations.

Example: Second-order, Strang splitting

I Strang’s splitting

I Explicit midpoint rule for the two hyperbolic solves and implicit
midpoint rule for the parabolic solve.

I The whole process can be rewritten as a five-stage IMEX scheme
with the following Butcher tableaux

0 0
1
4

1
4 0

1
2 0 1

2 0
1
2 0 1

2 0 0
3
4 0 1

2 0 1
4 0

1 0 1
2 0 0 1

2

0 0
1
4 0 0
1
2 0 0 1

2
1
2 0 0 1 0
3
4 0 0 1 0 0

1 0 0 1 0 0

I l ′ = (1, 2, 2, 4, 5) but the efficiency ratio is 1 because stages 3 and 4
do not require new function evaluations.

Example: Second-order, Strang splitting

I Strang’s splitting

I Explicit midpoint rule for the two hyperbolic solves and implicit
midpoint rule for the parabolic solve.

I The whole process can be rewritten as a five-stage IMEX scheme
with the following Butcher tableaux

0 0
1
4

1
4 0

1
2 0 1

2 0
1
2 0 1

2 0 0
3
4 0 1

2 0 1
4 0

1 0 1
2 0 0 1

2

0 0
1
4 0 0
1
2 0 0 1

2
1
2 0 0 1 0
3
4 0 0 1 0 0

1 0 0 1 0 0

I l ′ = (1, 2, 2, 4, 5) but the efficiency ratio is 1 because stages 3 and 4
do not require new function evaluations.

Example: Third-order

I Two-stage, third-order (A-stable) SDIRK method Crouzeix (1975),
Norsett (1974)

0 0
γ γ 0

1− γ γ − 1 2− 2γ 0

1 0 1
2

1
2

0 0
γ 0 γ

1− γ 0 1− 2γ γ

1 0 1
2

1
2

I with γ := 1
2 + 1

2
√

3
≈ 0.78867.

I The values for l ′ are (1, 1, 2). The efficiency ratio is 1
3γ ≈ 0.26.

I The implicit method is A-stable.

Example: New Third-order AE,JLG (2022)

I Three-stage, third-order

0 0
1
3

1
3 0

2
3 0 2

3 0

1 1
4 0 3

4

0 0
1
3

1
3 − γ γ

2
3 γ 2

3 − 2γ γ

1 1
4 0 3

4

I With γ := 1
2 + 1

2
√

3
≈ 0.78867.

I We have l ′ = l − 1 for all l ∈ {2:4}, and the method is optimal
(efficiency is 1).

Lemma
I The amplification function for Crouzeix’s method and the new

method are identical.

I The implicit method is A-stable.

Example: New Third-order AE,JLG (2022)

I Three-stage, third-order

0 0
1
3

1
3 0

2
3 0 2

3 0

1 1
4 0 3

4

0 0
1
3

1
3 − γ γ

2
3 γ 2

3 − 2γ γ

1 1
4 0 3

4

I With γ := 1
2 + 1

2
√

3
≈ 0.78867.

I We have l ′ = l − 1 for all l ∈ {2:4}, and the method is optimal
(efficiency is 1).

Lemma
I The amplification function for Crouzeix’s method and the new

method are identical.

I The implicit method is A-stable.

Example: New four stages, third-order, AE,JLG (2022)

I Four-stages, third-order.

0 0
1
4

1
4 0

1
2 0 1

2 0
3
4 0 1

4
1
2

1 0 2
3 − 1

3
2
3

0 0
1
4 −0.1858665215084591 0.4358665215084591
1
2 −0.4367256409878701 0.5008591194794110 0.4358665215084591
3
4 −0.0423391342724147 0.7701152303135821 −0.4136426175496265 0.4358665215084591

1 0 2
3 − 1

3
2
3

I Implicit part is L-stable.

I We have l ′ = l − 1 for all l ∈ {2:5}, and the method is optimal
(efficiency is 1).

Example: New four stages, third-order, AE,JLG (2022)

I Four-stages, third-order.

0 0
1
4

1
4 0

1
2 0 1

2 0
3
4 0 1

4
1
2

1 0 2
3 − 1

3
2
3

0 0
1
4 −0.1858665215084591 0.4358665215084591
1
2 −0.4367256409878701 0.5008591194794110 0.4358665215084591
3
4 −0.0423391342724147 0.7701152303135821 −0.4136426175496265 0.4358665215084591

1 0 2
3 − 1

3
2
3

I Implicit part is L-stable.

I We have l ′ = l − 1 for all l ∈ {2:5}, and the method is optimal
(efficiency is 1).

Example: New four stages, third-order, AE,JLG (2022)

I Four-stages, third-order.

0 0
1
4

1
4 0

1
2 0 1

2 0
3
4 0 1

4
1
2

1 0 2
3 − 1

3
2
3

0 0
1
4 −0.1858665215084591 0.4358665215084591
1
2 −0.4367256409878701 0.5008591194794110 0.4358665215084591
3
4 −0.0423391342724147 0.7701152303135821 −0.4136426175496265 0.4358665215084591

1 0 2
3 − 1

3
2
3

I Implicit part is L-stable.

I We have l ′ = l − 1 for all l ∈ {2:5}, and the method is optimal
(efficiency is 1).

Example: New five stages, fourth-order, AE,JLG (2022)
I Five-stages, fourth-order.
ae

2,1 = 0.2

ae
3,1 = 0.2607558226955500 ae

3,2 = 0.1392441773044501

ae
4,1 = −0.2585651787257025 ae

4,2 = 0.9113627416628056 ae
4,3 = −0.0527975629371033

ae
5,1 = 0.2162327643150383 ae

5,2 = 0.5153422309960234 ae
5,3 = −0.8166279419926541

ae
5,4 = 0.8850529466815924

ai
2,1 = −0.37281606248213467 ai

2,2 = 0.5728160624821347

ai
3,1 = −0.6600793510798527 ai

3,2 = 0.4872632885977181 ai
3,3 = 0.5728160624821347

ai
4,1 = −0.6993454327423951 ai

4,2 = 1.82596107935554 ai
4,3 = −1.0994317090952794

ai
4,4 = 0.5728160624821347

ai
5,1 = 0 ai

5,2 = −0.05144383172900513 ai
5,3 = 1.1789888903579122

ai
5,4 = −0.9003611211110416 ai

5,5 = 0.5728160624821347

bi
1 = −0.1051167845469182 bi

2 = 0.8788004715210063 bi
3 = −0.5890340406148428

bi
4 = 0.4621338048543395 bi

5 = 0.3532165487864152

I Implicit part is L-stable.

I We have l ′ = l − 1 for all l ∈ {2:6}, and the method is optimal
(efficiency is 1).

Example: New five stages, fourth-order, AE,JLG (2022)
I Five-stages, fourth-order.
ae

2,1 = 0.2

ae
3,1 = 0.2607558226955500 ae

3,2 = 0.1392441773044501

ae
4,1 = −0.2585651787257025 ae

4,2 = 0.9113627416628056 ae
4,3 = −0.0527975629371033

ae
5,1 = 0.2162327643150383 ae

5,2 = 0.5153422309960234 ae
5,3 = −0.8166279419926541

ae
5,4 = 0.8850529466815924

ai
2,1 = −0.37281606248213467 ai

2,2 = 0.5728160624821347

ai
3,1 = −0.6600793510798527 ai

3,2 = 0.4872632885977181 ai
3,3 = 0.5728160624821347

ai
4,1 = −0.6993454327423951 ai

4,2 = 1.82596107935554 ai
4,3 = −1.0994317090952794

ai
4,4 = 0.5728160624821347

ai
5,1 = 0 ai

5,2 = −0.05144383172900513 ai
5,3 = 1.1789888903579122

ai
5,4 = −0.9003611211110416 ai

5,5 = 0.5728160624821347

bi
1 = −0.1051167845469182 bi

2 = 0.8788004715210063 bi
3 = −0.5890340406148428

bi
4 = 0.4621338048543395 bi

5 = 0.3532165487864152

I Implicit part is L-stable.

I We have l ′ = l − 1 for all l ∈ {2:6}, and the method is optimal
(efficiency is 1).

Example: New five stages, fourth-order, AE,JLG (2022)
I Five-stages, fourth-order.
ae

2,1 = 0.2

ae
3,1 = 0.2607558226955500 ae

3,2 = 0.1392441773044501

ae
4,1 = −0.2585651787257025 ae

4,2 = 0.9113627416628056 ae
4,3 = −0.0527975629371033

ae
5,1 = 0.2162327643150383 ae

5,2 = 0.5153422309960234 ae
5,3 = −0.8166279419926541

ae
5,4 = 0.8850529466815924

ai
2,1 = −0.37281606248213467 ai

2,2 = 0.5728160624821347

ai
3,1 = −0.6600793510798527 ai

3,2 = 0.4872632885977181 ai
3,3 = 0.5728160624821347

ai
4,1 = −0.6993454327423951 ai

4,2 = 1.82596107935554 ai
4,3 = −1.0994317090952794

ai
4,4 = 0.5728160624821347

ai
5,1 = 0 ai

5,2 = −0.05144383172900513 ai
5,3 = 1.1789888903579122

ai
5,4 = −0.9003611211110416 ai

5,5 = 0.5728160624821347

bi
1 = −0.1051167845469182 bi

2 = 0.8788004715210063 bi
3 = −0.5890340406148428

bi
4 = 0.4621338048543395 bi

5 = 0.3532165487864152

I Implicit part is L-stable.

I We have l ′ = l − 1 for all l ∈ {2:6}, and the method is optimal
(efficiency is 1).

Important omitted details

I The definition of GL,lin is problem-dependent.
I For scalar equation with source S(u) = µφ(u)u(1− u), the following

low-order linearization is explicit and IDP for all µ ≥ 0

SL,lin
i (Un, ·) = mi∆t−1

(
ue∆tµφ(Un

i)

1 + u(e∆tµφ(Un
i) − 1)

− u

)
.

I IMEX setting allows for the hyperbolic problem and the parabolic
problem to be solved with their natural set of variables (when done
properly).

I The invariant domains for the hyperbolic problem and the parabolic
problem can be different.

I Conservation

I Limiting done with the Flux Transport Correction technique Zalezak
(1979) if the constraints are not affine

I Limiting done with convex limiting (Guermond, Popov, Tomas
(2019)) if the constraints are not affine.

Important omitted details

I The definition of GL,lin is problem-dependent.
I For scalar equation with source S(u) = µφ(u)u(1− u), the following

low-order linearization is explicit and IDP for all µ ≥ 0

SL,lin
i (Un, ·) = mi∆t−1

(
ue∆tµφ(Un

i)

1 + u(e∆tµφ(Un
i) − 1)

− u

)
.

I IMEX setting allows for the hyperbolic problem and the parabolic
problem to be solved with their natural set of variables (when done
properly).

I The invariant domains for the hyperbolic problem and the parabolic
problem can be different.

I Conservation

I Limiting done with the Flux Transport Correction technique Zalezak
(1979) if the constraints are not affine

I Limiting done with convex limiting (Guermond, Popov, Tomas
(2019)) if the constraints are not affine.

Important omitted details

I The definition of GL,lin is problem-dependent.
I For scalar equation with source S(u) = µφ(u)u(1− u), the following

low-order linearization is explicit and IDP for all µ ≥ 0

SL,lin
i (Un, ·) = mi∆t−1

(
ue∆tµφ(Un

i)

1 + u(e∆tµφ(Un
i) − 1)

− u

)
.

I IMEX setting allows for the hyperbolic problem and the parabolic
problem to be solved with their natural set of variables (when done
properly).

I The invariant domains for the hyperbolic problem and the parabolic
problem can be different.

I Conservation

I Limiting done with the Flux Transport Correction technique Zalezak
(1979) if the constraints are not affine

I Limiting done with convex limiting (Guermond, Popov, Tomas
(2019)) if the constraints are not affine.

Important omitted details

I The definition of GL,lin is problem-dependent.
I For scalar equation with source S(u) = µφ(u)u(1− u), the following

low-order linearization is explicit and IDP for all µ ≥ 0

SL,lin
i (Un, ·) = mi∆t−1

(
ue∆tµφ(Un

i)

1 + u(e∆tµφ(Un
i) − 1)

− u

)
.

I IMEX setting allows for the hyperbolic problem and the parabolic
problem to be solved with their natural set of variables (when done
properly).

I The invariant domains for the hyperbolic problem and the parabolic
problem can be different.

I Conservation

I Limiting done with the Flux Transport Correction technique Zalezak
(1979) if the constraints are not affine

I Limiting done with convex limiting (Guermond, Popov, Tomas
(2019)) if the constraints are not affine.

Important omitted details

I The definition of GL,lin is problem-dependent.
I For scalar equation with source S(u) = µφ(u)u(1− u), the following

low-order linearization is explicit and IDP for all µ ≥ 0

SL,lin
i (Un, ·) = mi∆t−1

(
ue∆tµφ(Un

i)

1 + u(e∆tµφ(Un
i) − 1)

− u

)
.

I IMEX setting allows for the hyperbolic problem and the parabolic
problem to be solved with their natural set of variables (when done
properly).

I The invariant domains for the hyperbolic problem and the parabolic
problem can be different.

I Conservation

I Limiting done with the Flux Transport Correction technique Zalezak
(1979) if the constraints are not affine

I Limiting done with convex limiting (Guermond, Popov, Tomas
(2019)) if the constraints are not affine.

Important omitted details

I The definition of GL,lin is problem-dependent.
I For scalar equation with source S(u) = µφ(u)u(1− u), the following

low-order linearization is explicit and IDP for all µ ≥ 0

SL,lin
i (Un, ·) = mi∆t−1

(
ue∆tµφ(Un

i)

1 + u(e∆tµφ(Un
i) − 1)

− u

)
.

I IMEX setting allows for the hyperbolic problem and the parabolic
problem to be solved with their natural set of variables (when done
properly).

I The invariant domains for the hyperbolic problem and the parabolic
problem can be different.

I Conservation

I Limiting done with the Flux Transport Correction technique Zalezak
(1979) if the constraints are not affine

I Limiting done with convex limiting (Guermond, Popov, Tomas
(2019)) if the constraints are not affine.

Conclusions

I Every ERK and IMEX methods can be made invariant-domain
preserving.

	Introduction
	Invariant domains
	Problems with SSP time stepping
	Invariant-domain-preserving Explict Runge-Kutta
	Numerical illustrations
	Invariant-domain-preserving IMEX

