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FSI problem of a body vibrating in a fluid

I Mechanics of plants and trees

I Understanding of animal swimming

I Energy harvesting from a flexible structure

I Steam generator in a nuclear Pressurized Water Reactor (PWR)

I Jules Horowitz Reactor (JHR)
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FSI problem of a body vibrating in a fluid

FIGURE – Left : sketch of the Jules Horowitz Reactor (JHR). Right : axial cross section of the JHR
assembly cell.
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Fluid is initially at rest
New theoretical formulation and

numerical validation



Definition of the problem
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FIGURE – Schematic diagram of the
system

I Two coaxial oscillating cylinders Cj with radii Rj
and length Li

I Immersed in a fluid of kinematic viscosity ν

I Imposed displacement <
{

eiΩTQi (X)
}

Qi(X) = Q
Wi (X)
Ni

ey ,

Ω the angular frequency,
Q the amplitude of the displacement,
Wi(X) the i-th bending mode of vibration of an
Euler-Bernoulli beam

Wi (X) = χ(1) cosh (ΛiX) + χ(2) cos (ΛiX)

+ χ
(3)
i sinh (ΛiX) + χ

(4)
i sin (ΛiX) ,

Ni = sup (|Wi (X)|, X ∈ [0, L]) .
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Governing equations

The Navier-Stokes equations and the boundary conditions for the incompressible fluid
flow <

{
eiΩT (Vi, Pi)

}
generated by the displacement Qi write

∇ ·Vi = 0,

iΩVi +
(
<
{

eiΩTVi

}
· ∇
)

Vi +
1
ρ
∇Pi − ν∆Vi = 0,

Vi − iΩQi = 0 on ∂C1,

Vi = 0 on ∂C2.

The linear fluid force <
{

eiΩTFi (X)
}

acting on C1 writes

Fi = −
∫

∂ΓC1

Pin1dΓ + ρν

∫
∂ΓC1

[
∇Vi + (∇Vi)T

]
· n1dΓ,

The modal added-mass coefficient Mij is defined as the projection of the fluid force
component Fi · ey generated by the i-th mode Wi/Ni onto the j-th mode Wj/Nj

Mij =
1
Nj
<
{ 〈Fi · ey ,Wj〉

QΩ2

}
, with 〈F,G〉 =

∫ L

0
F (X)G(X)dX.
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Governing equations

Dimensionless Navier-Stokes equations

∇∗ · vi = 0,

ivi +
KC

ε− 1
(vi · ∇∗) vi +

1
ε− 1

∇∗pi −
1
Sk

( 1
ε− 1

)2
∆∗vi = 0,

vi − iqi = 0 on ∂C1,

vi = 0 on ∂C2,

I x = X/L1 and t = TΩ
I Vi = QΩ vi, Pi = ρQR1Ω2 pi, Fi = ρQ (R1Ω)2 fi
I qi = Qi/Q and wi (x) = Wi (L1x)
I ∇∗ = (R2 −R1)∇ and ∆∗ = (R2 −R1)2 ∆

I Aspect ratio l =
L1

R1
and radius ratio ε =

R2

R1

I Keulegan-Carpenter number KC =
Q

R1
and Stokes number Sk =

R12Ω
ν
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The fluid coupled modes with different wave-numbers

I The inner cylinder is imposed a vibration mode corresponding to a clamped-free
boundary condition :

wi (x) = cosh (λix)− cos (λix)− σi (sinh (λix)− sin (λix))

I Slender-body theory [M. P. Païdoussis, Dynamics of cylindrical structures
subjected to axial flow, 1973]

m
(ref,∞)
ij (ε) =

ε2 + 1
ε2 − 1

〈wi, wi〉
N2
i

δij

I 3D numerical simulations with TrioCFD : R1 = 0.02 m, R2 = 0.022 m, L1 = 0.7
m, L2 = 0.8m, Q = 5× 10−5 m, and Ω/(2π) = 90 Hz

FIGURE – Dimensionless added mass matrix for the clamped-free case. The radius ratio is ε = 1.1
and the aspect ratio is l = 35

I The numerical added mass matrix is non-diagonal, with off-diagonal terms of
the order of 10% of the diagonal terms
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New theoretical formulation



New theoretical formulation

I Neglect the viscous effects : Sk →∞
I Small oscillations (neglect the nonlinear convective term) : KC → 0
I Dimensionless Navier-Stokes equations simplifies to

∇∗ · vi = 0,

ivi +
1

ε− 1
∇∗pi = 0,

(vi − iqi) · n1 = 0 on ∂C1,

vi · n2 = 0 on ∂C2.

I The pressure field is a harmonic function

∆∗pi =
∂2pi

∂r2 +
1
r

∂pi

∂r
+

1
r2
∂2pi

∂θ2 +
1
l2
∂2pi

∂x2 = 0,

with (r, θ, x) = (R/R1, θ,X/L) the dimensionless cylindrical coordinates.
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New theoretical formulation

I Introducing r̃ = r − 1, p̃i (r̃, θ, x) = pi (r − 1, θ, x), and 1/r ≈ 1 (narrow
annulus)

∂p̃i

∂r̃
+
∂2p̃i

∂θ2 +
1
l2
∂2p̃i

∂x2 = −
∂2p̃i

∂r̃2 .

I Averaging in the radial direction of the annulus

〈
∂p̃i

∂r̃

〉
r̃
+
∂2〈p̃i〉r̃
∂θ2 +

1
l2
∂2〈p̃i〉r̃
∂x2 = −

1
ε− 1

[
∂p̃i

∂r̃

]r̃=ε−1

r̃=0
, with 〈p̃i〉r̃ =

1
ε− 1

ε−1∫
0

p̃idr̃.

I Using the boundary conditions

∂p̃i

∂r̃

∣∣∣
r̃=0

= −ivi · er ≈ −ivi · n1 =
wi

Ni
cos (θ) ,

∂p̃i

∂r̃

∣∣∣
r̃=ε−1

= 0.
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New theoretical formulation

I Seeking a solution as 〈p̃i〉r̃ = pi (x) /Ni cos (θ)

d2pi

dx2 − l
2pi =

1
ε− 1

l2wi.

I Modeled the cylinder as an Euler-Bernoulli beam :

wi (x) = χ(1) cosh (λix) + χ(2) cos (λix) + χ
(3)
i sinh (λix) + χ

(4)
i sin (λix) .

I The dimensionless pressure in the narrow channel writes

pi (x, θ) ∼
ε→1

= −
2∑
k=1

[
g

(k)
i (x, l, ε) + a

(k)
i (l, ε) elx + b

(k)
i (l, ε) e−lx

]
cos(θ).

I The dimensionless fluid force writes

fi = ∼
ε→1

(ε− 1)
1
π

1∫
0

2π∫
0

−pi (x, θ)erdθdx.
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New theoretical formulation

⇒ New theoretical formulation for the dimensionless modal added mass
coefficient

mij (l, ε, wi, wj) =
1

ε− 1

[
m

(S)
ij (l, wi, wj) +m

(A)
ij (l, wi, wj)

]
� Depends on the radius ratio ε, the aspect ratio l, and the vibration mode wj

� Full analytical expressions for m(S)
ij

and m(A)
ij

� Applies for all classical boundary conditions

R. Lagrange and M. A Puscas
New theoretical and numerical results on the modal added-mass matrix of a finite
length flexible cylinder immersed in a narrow annular fluid, considering various
boundary conditions.
Journal of Fluids and Structures, submitted, 2022.

R. Lagrange and M. A Puscas
Hydrodynamic interaction between two flexible finite length coaxial cylinders : new
theoretical formulation and numerical validation.
Journal of Applied Mechanics, submitted, 2022.
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New theoretical formulation
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FIGURE – Clamped-Sliding case. Evolution of the added mass coefficient (ε− 1)mij as a
function of the aspect ratio l. Left : diagonal terms. The horizontal dashed lines correspond to the
limit l→∞. Right : off-diagonal terms
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Fluid solver



Incompressible turbulent fluid solver : TrioCFD software

I A Computational Fluid Dynamics code developed at CEA for incompressible or
quasi-compressible turblent flows and energy transfert

I Two spatial discretizations : “Finite Difference-Volume" (FDV) for
square/hexahedral meshes and “Finite Element-Volume" (FEV) for
triangular/tetrahedral meshes
Note : the PolyMAC discretization on the polygonal mesh will be soon available

I Time discretization schemes : explicit (Forward Euler) and implicit (Backward
Euler) whitin a multi-step (projection-correction) technique

I RANS and LES turbulence models

I Eulerian formulation

I Open source (http ://triocfd.cea.fr/) and massively parallel (SPMD + MPI).
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TrioCFD with Arbitrary Lagrangian-Eulerian framework

I Imposed displacement on the inner cylinder in the form Q(X) sin(ΩT )
I The numerical simulation does not neglect the convective and viscous terms of

the Navier-Stokes equations

I The FSI problem involving moving boundaries is solved using an Arbitrary
Lagrange-Eulerian method (ALE)

I A fluid particle is identified by its position relative to a frame moving with a
nonuniform velocity VALE

∇ ·V = 0,
∂JV
∂T

− J
(
ν∆V− (V · ∇) V + (VALE · ∇) V−

1
ρ
∇P
)

= 0,

V− ΩQ(X) cos(ΩT ) = 0 on ∂C1,

V = 0 on ∂C2,

where J is the Jacobian of the transformation between the ALE and the Lagrange
descriptions.
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TrioCFD with Arbitrary Lagrangian-Eulerian (ALE)
framework

I Many possibilities to calculate vALE . For moderate deformations, one can pose a
Laplace problem that is known as harmonic mesh motion [Donea, Giuliani,
Halleux, CMAME, 1982] :

∆VALE = 0,
VALE − ΩQ(X) cos(ΩT ) = 0 on ∂C1,

VALE = 0 on ∂C2,

I Discretisation : hybrid Finite Element-Volume method for tetrahedral grids and the
first-order backward Euler scheme

[D]Vh
n+1 = 0,

[M ]

(
Jn+1Vh

n+1 − JnVh
n
)

∆t
− Jn+1

(
[A]Vh

n+1 − [L(Vh
n)]Vh

n+1+

[L(Vh
n)]Vh,ALE

n+1 − [G]Phn+1
)

= 0,

[D], [M ], [A], [L(V)], and [G] the discrete divergence, mass, diffusion, nonlinear,
and gradient matrix operators.
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Finite Element-Volume (FEV) method

I FEV method : a modification of the Crouzeix-Raviart element (P1NC/P0 EF).
I The discrete pressure is defined on the primary grid while the discrete velocity is

defined on a face-based staggered dual grid.
I Local equations are integrated over control volumes : the primal mesh cells for

mass and the dual mesh cells for impulsion.
I Fluxes and differential operators are computed by means of a Finite Elements

(FE) formulation.
I Three FEV schemes resulting from the choice of the pressure DoF : P1NC/P0,

P1NC/P0+P1 and P1NC/P0+P1+Pa.
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Vh

Ph•

Ph

Ph

Ph Gi

Gj

•

•

Xi
Xj

•
•

S1

S2

•

•

Ki

Kj

(a) (b)
FIGURE – (a)Degrees of freedom of a 2D element (black squares for velocity Vh, black dots and
circles for pressure Ph). (b) Dual control volume between two adjacent triangular cells Ki and Kj

of respective barycenters Gi and Gj .
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Theory vs. Numerics



Comparison to numerical simulations : effect of the radius
ratio

FIGURE – Dimensionless added mass matrix for the clamped-free case and three values of the
radius ratio ε = {1.0375, 1.1, 1.2}. The aspect ratio is l = 35.

R1 = 0.02 m, Ω/(2π) = 90 Hz, and Q = K (R2 −R1), with K = 2.5 %
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Comparison to numerical simulations : effect of the
aspect ratio

FIGURE – Dimensionless added mass matrix for the clamped-free case and three values of the
aspect ratio l = {35, 70, 140}. The radius ratio is ε = 1.1.

R1 = 0.02 m, Ω/(2π) = 90 Hz, and Q = K (R2 −R1), with K = 2.5 %

Cylinders vibrating in a fluid SISMA

M. A. Puscas, R. Lagrange Page 23/33



Comparison to numerical simulations : aspect ratio
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FIGURE – Evolution of the dimensionless fluid force (ε− 1)(fj · ey) = f(l, wj), as a function of
the aspect ratio, l = L/R1 ∈ {15, 35, 50, 70, 100, 140, 175}, for the first three modes of the
clamped-sliding and free-pinned boundary conditions. The radius ratio is ε = 1.1. Lines
correspond to the theoretical prediction and open circles correspond to the numerical simulations.
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Axial flow.
CFD solver coupled

with a beam structure



Bending vibration of a beam

I Structural dynamics :

Mü(x, t) + Cu̇(x, t) +Ku(x, t) = Ff (x, t) (6)

I Ff (x, t) the fluid force

I The matrices M and K are computed based on a spatial finite element
discretization (the beam element, polynomial approximation of degree 3)

I C is computing by the following equation (Rayleigh damping) :

C = αM + ωK, whereα andω are two parameters of the method

I Model reduction method for the dynamic response analysis of a beam structure

u(x, t) =
m∑
j=0

qj(t)wj(x) (7)

I The modal deformations wj are computed by solving an eigenvalue problem :

(K − λ2M)w(x) = 0
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Reduced beam model

By introducing the decomposition (7) into the equilibrium equation (6), by multiplying by
wj and integrating along the beam, we get m independent scalar equations :

mj q̈j(t) + cj q̇j(t) + kjqj(t) = fj(t), j = 0, . . . ,m.

with :

I fj(t) =
∫ 1

0
Ff (x, t)wj(x)dx (projection of the fluid force on the mode j)

I mj = wj(x)TMwj(x) (projection of the mass matrix on the mode j)

I mij = wi(x)TMwj(x) = 0 (orthogonality of modes). Idem for cij and kij
Vectorial form :

M∗q̈(t) + C∗q̇(t) +K∗q(t) = f(t),

with M∗ = diag(m0, . . . ,mm), C∗ = diag(c0, . . . , cm), etc.
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Temporal discretization

I Temporal discretization is based on the Newmark family integration schemes :

(
M∗ + γ∆tC∗ + β∆t2K∗

)
q̈n+1 = fn+1(q̇n+1)− C∗ (q̇n + (1− γ)∆tq̈n)

−K∗
(
qn + ∆tq̇n + ∆t2

(1
2
− β
)
q̈n
)

q̇n+1 = q̇n + (1− γ)∆tq̈n + γ∆tq̈n+1

qn+1 = qn + ∆tq̇n + ∆t2
(1

2
− β
)
q̈n + ∆t2βq̈n+1

Centered differences
• γ = 1/2, β = 0
• Explicit scheme
• The scheme is stable if

∆t ≤ ∆tcrit with ∆tcrit ≤ 2
lc

c

Average acceleration
• γ = 1/2, β = 1/4
• Implicit scheme
• The scheme is unconditionally

stable
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TrioCFD coupling with the reduced beam model

I Recombine on physical basis un+1(x, t) =
m∑
j=0

qn+1
j wj(x)

I Interpolations on the 3d surface of the fluid-structure interface

I Explicit (or loosely coupling) time coupling scheme between TrioCFD and the
beam model : conventional serial staggered (CSS) scheme.

FLUID BeamCOUPLING

Vn
h , P

n
h

1 Send beam velocity u̇n
q̈n, q̇n, qn

4 Beam update

2 Fluide update

3 Send fluid forces Fnf (u̇n)
Vn+1
h

, Pn+1
h

q̈n+1, q̇n+1, qn+1

FIGURE – Structure of the explicit CSS coupling scheme
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Laminar flow. Pinned - pinned case

I R1 = 0.02 m, R1 = 0.022 m, L1 = 0.7 m, L2 = 0.8 m, Ω/(2π) = 90 Hz

I Explicit CSS time coupling scheme between TrioCFD and the beam model. Initial
condition for the beam : release of 0.1 mm and boundary condition of type
pinned-pinned.

I Slender-body theory [M. P. Païdoussis and M.Ostoja-Starzewski, Slender flexible
cylinder in an incompressible axial flow theory, 1981]

I Modal added mass coefficient m11 :
Reynolds Theory CSS τ(%)

0 5.388 5.480 1.7
100 5.388 5.480 1.7
200 5.388 5.481 1.7
500 5.388 5.486 1.8

1000 5.388 5.480 1.7
2000 5.388 5.471 1.5

FIGURE – Dimensionless added mass coefficient Cm,11 for the pinned - pinned case. The radius
ratio is ε = 1.1, the aspect ratio is l = 35, and the frequency Ω/(2π) = 90 Hz.

I Reynolds, Re =
2(R2 −R1)V ann

ν
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Turbulent flow : URANS simulations. Pinned - pinned
case

I URANS k − ε model

I R1 = 0.02 m, R1 = 0.022 m, L1 = 0.7 m, L2 = 0.8 m, Ω/(2π) = 90 Hz

I Explicit CSS time coupling scheme between TrioCFD and the beam model. Initial
condition for the beam : release of 0.1 mm and boundary condition of type
pinned-pinned.

I Modal added mass coefficient m11 :
Reynolds Theory CSS τ(%)

0 5.388 5.356 0.59
4 · 104 5.417 5.402 0.27
5 · 104 5.431 5.422 0.16
6 · 104 5.455 5.479 0.43

FIGURE – Dimensionless added mass coefficient Cm,11 for the pinned - pinned case. The radius
ratio is ε = 1.1, the aspect ratio is l = 35, and the frequency Ω/(2π) = 90 Hz.
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Conclusions and perspectives

Conclusions :
I New theoretical formulation to estimate the fluid force and the added mass matrix

� Good agreement between the numerics and the new theoretical formulation
� Different classical types of the boundary conditions (3 first modes)
� Effect of the radius ratio : ε ∈ {1.0375, 1.1, 1.2}
� Effect of the aspect ratio : l ∈ {15, 35, 50, 70, 100, 140, 175}
� Vibration of the inner and external cylinders

I Explicit time coupling between TrioCFD (ALE) and a beam structure model
� Good agreement for the mass coefficients
� Laminar flow : Re ∈ {0, 100, 200, 500, 1000, 2000}
� Turbulent flow : Re ∈ {4 · 104

, 5 · 104
, 6 · 104}

Perspectives :

I Refine the present theory further to consider the viscous effects (working in
progress) : derive analytical expressions for the added-mass and added-damping

I Derive analytical expressions for the fluid forces due to an axial flow
I Carry out an analysis of stability to establish the Argand’s diagrams of all the

boundary conditions

I Focus on the effect of the off-diagonal terms generated by the finite length of the
vibrating cylinder on the threshold of instability
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Thank you for your attention
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