Schémas volumes finis positifs pour l'équation de diffusion sur maillages déformés avec P. Anguill², F. Hermeline², E. Labourasse², J. Patela²

X. Blanc $^{\rm 1}$

¹Université Paris Cité

²CEA, DAM, DIF

Schéma positif en 2D

- Schéma volumes finis
- Flux non linéaires
- Traitement de la non linéarité
- Tests numériques

Tests numériques

Introduction

Schéma positif en 2D Schémas positifs en 3D Ordre élevé Conclusion et Perspectives Contexte Objectifs Bibliographie

Laser Mégajoule

Introduction Schéma positif en 2D

Schémas positifs en 3D Ordre élevé

Conclusion et Perspectives

Contexte Objectifs Bibliographie

Fusion par confinement inertiel

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Contexte Objectifs Bibliographie

Fusion par confinement inertiel

Inertial Confinement Fusion Concept

Contexte Objectifs Bibliographie

Modélisation

Couplage multi-physique:

- Interaction laser-plasma
- Instabilités hydrodynamiques
- Particules supra-thermiques
- Hors-équilibre thermodynamique local
- Incertitudes
-

Contexte Objectifs Bibliographie

- Expériences de fusion par confinement inertiel (LMJ,NIF)
- Modèles physiques :
 - Hydrodynamique Lagrangienne (ou ALE)
 - Transfert radiatif (équation de diffusion)
- Parallélisme

Contexte Objectifs Bibliographie

- Expériences de fusion par confinement inertiel (LMJ,NIF)
- Modèles physiques :
 - Hydrodynamique Lagrangienne (ou ALE)
 - Transfert radiatif (équation de diffusion)
- Parallélisme

Contexte Objectifs Bibliographie

Equation de diffusion implicite :

 $-\Delta u + u = f$

Les objectifs :

- Consistance
- Convergence (ordre 2 ?)
- Stabilité/robustesse
- Positivité/principe du maximum
- Conservativité

Les contraintes :

- Maillage déformé
- Volumes finis
- Parallélisation

< 🗗 🕨

Introduction

Schéma positif en 2D Schémas positifs en 3D Ordre élevé Conclusion et Perspectives Contexte Objectifs Bibliographie

- volumes finis (centrés) :
 - Kershaw, Pert (1981)
 - Faille (1992)
 - Morel, Dendy, Hall, White (1992)
 - Coudière, Vila, Villedieu (1999)
 - Jayantha, Turner (2001, 2003, 2005)
 - Bertolazzi, Manzini (2005)
- Eléments finis mixtes (hybrides) :
 - Raviart, Thomas (1977)
 - Burbeau, Roche, Scheurer, Samba (1997)
 - Arbogast, Wheeler, Yotov (1998)
- Discrete Duality Finite Volumes (DDFV):
 - Hermeline (1998, 2000, 2003,2007,2009)
 - Domelevo, Omnes (2005)
- Mimetic Finite Difference (MFD):
 - Shashkov, Steinberg, Morel, Lipnikov, Brezzi (1995, 1997, 1998, 2004).

Contexte Objectifs Bibliographie

- Multi-point flux approximation (MPFA):
 - Aavatsmark, Barkve, Boe, Mannseth (1996, 1998)
 - Breil, Maire (2008)
- Scheme Using Stabilisation and Harmonic Interfaces (SUSHI):
 - Eymard, Gallouët, Herbin, 2010.
- Différences finies d'ordre élevé
 - Le Potier (2009)
- Maillages de Voronoï
 - Siess (2009)
- Volumes finis non linéaires
 - Droniou, Le Potier, Sheng, Yue, Yuan (2012, ...)
 - Sheng, Yuan (2011, ...)

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Formulation volumes finis

Schéma volumes finis (maille K, faces e) :

$$\int_{K} u - \int_{K} \Delta u = \int_{K} f,$$
$$|K|u_{K} + \sum_{e \in \partial K} \left(- \int_{e} \nabla u \cdot n_{K_{e}} \right) = |K|f_{K},$$

イロト イヨト イヨト イヨト

 \Rightarrow Approximation consistante de

$$\mathcal{F}_{K,e} = -\int_e \nabla u \cdot \mathbf{n}_{K_e}.$$

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Première tentative

Le schéma le plus simple :
Approximation du gradient sur la face
$$e$$
 : $\nabla u \approx \frac{u(\mathbf{x}_L) - u(\mathbf{x}_K)}{|\mathbf{x}_L - \mathbf{x}_K|} \frac{\mathbf{x}_L - \mathbf{x}_K}{|\mathbf{x}_L - \mathbf{x}_K|}$,

$$\nabla u \cdot n_{K_e} \approx \frac{u(\mathbf{x}_L) - u(\mathbf{x}_K)}{|\mathbf{x}_L - \mathbf{x}_K|} \frac{\mathbf{x}_L - \mathbf{x}_K}{|\mathbf{x}_L - \mathbf{x}_K|} \cdot n_{K_e} = \frac{u(\mathbf{x}_L) - u(\mathbf{x}_K)}{|\mathbf{x}_L - \mathbf{x}_K|} \cos(\theta),$$

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Première tentative

$$\mathcal{F}_{K,e} = -\int_{e} \nabla u \cdot n_{K_{e}} \approx |e| \frac{u_{K} - u_{L}}{|\mathbf{x}_{K} - \mathbf{x}_{L}|} \cos(\theta).$$

- M-matrice : principe du maximum.
- non convergent sur maillage déformé

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Première tentative

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の Q ()

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Deuxième tentative

<u>Idée</u> : utiliser des inconnues intermédiaires aux sommets pour calculer ∇u (donc le flux).

Valeurs aux sommets calculées par interpolation.

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Deuxième tentative

Stencil à 9 points.

- Consistant, ordre 2.
- Perte du principe du maximum.

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Deuxième tentative

Perte du principe du maximum.

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Schéma positif Yuan, Sheng, 2008

Pour chaque face, deux flux consistants :

$$F_{1} = -|e|\kappa_{e}\left(\alpha_{K}\frac{u_{M_{1}}-u_{K}}{\|\overrightarrow{KM_{1}}\|} + \beta_{K}\frac{u_{M_{2}}-u_{K}}{\|\overrightarrow{KM_{2}}\|}\right),$$

$$F_{2} = -|e|\kappa_{e}\left(\alpha_{L}\frac{u_{M_{3}}-u_{L}}{\|\overrightarrow{LM_{3}}\|} + \beta_{L}\frac{u_{M_{4}}-u_{L}}{\|\overrightarrow{LM_{4}}\|}\right).$$

On les combine pour en faire un flux à deux points :

$$\begin{split} F_{K,e} &= \mu_1(u)F_1 - \mu_2(u)F_2, \\ F_{L,e} &= \mu_2(u)F_2 - \mu_1(u)F_1, \end{split}$$

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

$$F_{K,e} = \mu_{1}|e|\kappa_{e}\left(\alpha_{K}\frac{1}{\|\overrightarrow{KM_{2}}\|} + \beta_{K}\frac{1}{\|\overrightarrow{KM_{1}}\|}\right)u_{K}$$
$$-\mu_{2}|e|\kappa_{e}\left(\alpha_{L}\frac{1}{\|\overrightarrow{LM_{4}}\|} + \beta_{L}\frac{1}{\|\overrightarrow{LM_{2}}\|}\right)u_{L}$$
$$-\mu_{1}|e|\kappa_{e}\left(\alpha_{K}\frac{u_{M_{2}}}{\|\overrightarrow{KM_{2}}\|} + \beta_{K}\frac{u_{M_{1}}}{\|\overrightarrow{KM_{1}}\|}\right)$$
$$=a_{1}$$
$$+\mu_{2}|e|\kappa_{e}\left(\alpha_{L}\frac{u_{M_{4}}}{\|\overrightarrow{LM_{4}}\|} + \beta_{L}\frac{u_{M_{3}}}{\|\overrightarrow{LM_{3}}\|}\right)$$
$$=a_{2}$$

Contraintes :

$$\begin{cases}
\mu_1 + \mu_2 &= 1, \\
a_1\mu_1 - a_2\mu_2 &= 0.
\end{cases} \iff \mu_1 = \frac{a_2}{a_1 + a_2}, \quad \mu_2 = \frac{a_1}{a_1 + a_2}.$$

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

$$F_{K,e} = A_{K,e}u_K - A_{L,e}u_L, \quad F_{L,e} = -F_{K,e},$$

$$\begin{aligned} A_{K,e} &= \mu_1 |e|\kappa_e \left(\alpha_K \frac{1}{\|\overrightarrow{KM_2}\|} + \beta_K \frac{1}{\|\overrightarrow{KM_1}\|} \right), \quad \mu_1 = \frac{a_2}{a_1 + a_2}, \\ A_{L,e} &= \mu_2 |e|\kappa_e \left(\alpha_L \frac{1}{\|\overrightarrow{LM_4}\|} + \beta_L \frac{1}{\|\overrightarrow{LM_3}\|} \right), \quad \mu_2 = \frac{a_1}{a_1 + a_2}. \\ \begin{pmatrix} a_1 &= |e|\kappa_e \left(\alpha_K \frac{u_{M_2}}{\|\overrightarrow{KM_2}\|} + \beta_K \frac{u_{M_1}}{\|\overrightarrow{KM_1}\|} \right), \\ a_2 &= |e|\kappa_e \left(\alpha_L \frac{u_{M_4}}{\|\overrightarrow{LM_4}\|} + \beta_L \frac{u_{M_3}}{\|\overrightarrow{LM_3}\|} \right). \\ \end{pmatrix} \end{aligned}$$

Flux à deux points non linéaire.

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Equation

$$u - \Delta u = f$$
.

Schéma

$$U+M(U)U=F,$$

$$[M(U)]_{KK} = \sum_{e \in K} A_{K,e},$$
$$[M(U)]_{KL} = -A_{L,e} \quad \text{si } K \neq L.$$

- M(U) n'est pas symétrique.
- $M(U)^T$ est une M-matrice : schéma positif.
- \sum coefficients d'une colonne = 0 : schéma conservatif.

イロト イヨト イヨト イヨト

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Algorithme

Schéma non linéaire U + M(U)U = F : point fixe

 $U^{n+1} + M(U^n)U^{n+1} = F.$

• L'équation U + M(U)U = F admet une solution.

Droniou, Le Potier, 2010

・ロト ・日ト ・ヨト ・ヨト

• Pour γ (= Δt) assez petit, l'algorithme

$$U^{n+1} + \gamma M(U^n) U^{n+1} = F$$

est convergent.

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Etude de convergence

Problème avec solution analytique :

$$\begin{cases} -\Delta u = 2\pi^2 \cos(\pi x) \cos(\pi y) & \text{dans } \Omega =]0, 1[\times]0, 1[, \\ \partial_n u = 0 & \text{sur } \partial\Omega, \\ \int_{\Omega} u = 2. \end{cases}$$

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Onde de Marshak

Onde de Marshak sur un maillage de Kershaw : $\partial_t u - \Delta u^p = 0$. Solution explicite $u(x, t) = \left(\frac{t}{p} - x\right)_{\perp}^{1/p}$.

 $\Delta x = 0.05$

イロト イヨト イヨト イヨト

Schéma volumes finis Flux non linéaires Traitement de la non linéarité Tests numériques

Onde de Marshak

Onde de Marshak sur un maillage de Kershaw : $\partial_t u - \Delta u^p = 0$. Solution explicite $u(x, t) = \left(\frac{t}{p} - x\right)_+^{1/p}$.

 $\Delta x = 0.025.$

Problèmes spécifiques Tests numériques

Dimension 3

Difficultés supplémentaires :

- Définition maille/face
- Base associée à une face
- Situations pathologiques

Dimension 3

Problèmes spécifiques Tests numériques

Difficultés supplémentaires :

- Définition maille/face
- Base associée à une face
- Situations pathologiques

29

Dimension 3

Difficultés supplémentaires :

- Définition maille/face
- Base associée à une face
- Situations pathologiques

Problèmes spécifiques

Tests numériques

Problèmes spécifiques Tests numériques

Géométrie

Définitions :

- Centre d'une face *e* : isobarycentre des sommets.
- Face : union des triangles définis par le centre et une arête.

• Normale effective
$$n_e = \int_e n dS$$
.

Problèmes spécifiques Tests numériques

Volumes finis

Schéma volumes finis (maille K, faces e) :

$$\int_{K} u - \int_{K} \Delta u = \int_{K} f,$$
$$|K|u_{K} + \sum_{e \in \partial K} \left(-\int_{e} \nabla u \cdot n_{K_{e}} \right) = |K|f_{K},$$

 \Rightarrow Approximation consistante de

$$\mathcal{F}_{K,e} = -\int_e \nabla u \cdot n_{K_e}.$$

イロト イヨト イヨト イヨト

Problèmes spécifiques Tests numériques

Volumes finis

Somme sur les triangles d'une face :

$$\mathcal{F}_{K,e} = -\int_{e} \nabla u \cdot n = -\sum_{T} (\nabla u)_{T} n_{T}.$$

- décomposition n_T
- différences finies
- combinaison de flux

Image: A math a math

Problèmes spécifiques Tests numériques

Cas tests

Un cas de convergence : $u(x, y, z) = 1 + \cos(\pi x) \cos(\pi y) \cos(\pi z)$. Maillage aléatoire.

イロト イヨト イヨト イヨト

Problèmes spécifiques Tests numériques

Cas tests

Onde de Marshak sur un maillage de Kershaw : $\partial_t u - \Delta u^p = 0$. Solution explicite $u(x, t) = \left(\frac{t}{p} - x\right)_+^{1/p}$.

Dimension 1 Dimension 2

Consistance

Dimension 1 : ordre 2 consistant => On regarde l'ordre élevé.

$$\begin{cases} -u''+u=f & \text{dans} \quad \Omega=]0,1[,\\ u=g & \text{sur} \quad \partial\Omega, \end{cases}$$

Schéma :

- d'ordre élevé (≥ 3)
- positif
- conservatif
- B. Després, Non linear schemes for the heat equation in 1D, M2AN, 2014.

イロト イヨト イヨト イヨト

Dimension 1 Dimension 2

Ordre élevé

-u''+u=f.

Méthode volumes finis :

$$\mathcal{F}_{i+\frac{1}{2}}-\mathcal{F}_{i-\frac{1}{2}}+h_iu_i=h_if_i.$$

Flux

$$\mathcal{F}_{i+\frac{1}{2}} = -u'(x_{i+\frac{1}{2}})$$

イロト イヨト イヨト イヨト

Dimension 1 Dimension 2

Flux d'ordre élevé

Développements de Taylor intégrés au voisinage de $x_{i+\frac{1}{2}}$

$$u_{i+1} = u(x_{i+\frac{1}{2}}) + \frac{h_{i+1}}{2}u'(x_{i+\frac{1}{2}}) + \sum_{\ell=2}^{k} \frac{h_{i+1}^{\ell}}{(\ell+1)!}u^{(\ell)}(x_{i+\frac{1}{2}}) + \mathcal{O}\left(h_{i+1}^{k+1}\right),$$

$$u_{i} = u(x_{i+\frac{1}{2}}) - \frac{h_{i}}{2}u'(x_{i+\frac{1}{2}}) + \sum_{\ell=2}^{k} \frac{(-1)^{\ell}h_{i}^{\ell}}{(\ell+1)!}u^{(\ell)}(x_{i+\frac{1}{2}}) + \mathcal{O}\left(h_{i}^{k+1}\right).$$

Soustraction :

$$u'(x_{i+\frac{1}{2}}) = \frac{1}{h_{i+\frac{1}{2}}}(u_{i+1}-u_i) \underbrace{-\sum_{\ell=2}^{k} \frac{h_{i+1}^{\ell} + (-1)^{\ell} h_{i}^{\ell}}{h_{i+\frac{1}{2}}(\ell+1)!} u^{(\ell)}(x_{i+\frac{1}{2}}) + \mathcal{O}\left(h^{k}\right)}_{r_{i+\frac{1}{2}}}.$$

Flux exact
$$\mathcal{F}_{i+\frac{1}{2}} = -\frac{1}{h_{i+\frac{1}{2}}}(u_{i+1}-u_{i}) + r_{i+\frac{1}{2}}.$$

Calcul des flux

Evaluation des dérivées $u^{(\ell)}(x_{i+\frac{1}{2}})$: reconstruction polynomiale

Dimension 1

Dimension 2

Polynôme de degré k : k + 1 mailles voisines de $x_{i+\frac{1}{2}}$.

$$P(x) = a_k(u_0, ... u_k)x^k + ... + a_0(u_0, ... u_k).$$

Contraintes

$$\frac{1}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} P(x) = u_i.$$
$$u^{(\ell)}|_{i+\frac{1}{2}} \approx P^{(\ell)}(x_{i+\frac{1}{2}}).$$

< ロ > < 同 > < 三 >

Dimension 1 Dimension 2

Positivité

Une astuce de Y. Gao et al. ¹ pour assurer la positivité

$$\mathcal{F}_{i+\frac{1}{2}} = -\frac{1}{h_{i+\frac{1}{2}}}(u_{i+1}-u_i) + r_{i+\frac{1}{2}}.$$

Partie positive et partie négative :

$$r_{i+\frac{1}{2}} = r_{i+\frac{1}{2}}^{+} - r_{i+\frac{1}{2}}^{-}, \qquad r_{i+\frac{1}{2}}^{+} = \frac{\left| \frac{r_{i+\frac{1}{2}}}{2} \right| + r_{i+\frac{1}{2}}}{2} \ge 0, \quad r_{i+\frac{1}{2}}^{-} = \frac{\left| \frac{r_{i+\frac{1}{2}}}{2} \right| - r_{i+\frac{1}{2}}}{2} \ge 0.$$

Réécriture des flux

$$\mathcal{F}_{i+\frac{1}{2}} = -\left(\frac{1}{h_{i+\frac{1}{2}}} + \frac{r_{i+\frac{1}{2}}}{u_{i+1}}\right)u_{i+1} + \left(\frac{1}{h_{i+\frac{1}{2}}} + \frac{r_{i+\frac{1}{2}}}{u_{i}}\right)u_{i}.$$

Coefficients positifs (M-matrice), non linéarité.

¹ Y. Gao, G. Yuan, S. Wang, X. Hang, A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes, Journal of Computational Physics, 2020.

Dimension 1 Dimension 2

Propriétés du schéma

- Conservativité
- Positivité
- Consistance des flux à l'ordre k
- Convergence à l'ordre k-1 sous hypothèse de stabilité

Schéma d'ordre élevé Au = f : solution \overline{u} . Version non linéaire positive B(u)u = f : solution u (point fixe).

- Si u > 0, alors $\overline{u} = u$ (unique) solution positive.
- Sinon, $u \ge 0$ (pas "solution" de B(u)u = f).

Dimension 1 Dimension 2

Tests numériques

$$\begin{cases} -(\kappa u')' = f & \text{dans } \Omega =]0,1[,\\ u = g & \text{sur } \partial \Omega. \end{cases}$$

$$\kappa(x) = \exp(x).$$

Solution analytique

$$u(x) = \sin(\pi x) - 2x^2 + 4,$$

 $\begin{cases} f(x) = 4 \exp(x) + 4x \exp(x) - \pi \cos(\pi x) \exp(x) + \pi^2 \exp(x) \sin(\pi x) \ge 0, \\ g(0) = 4 \ge 0 \quad \text{et} \quad g(1) = 2 \ge 0. \end{cases}$

Dimension 1 Dimension 2

Convergence L2

Dimension 1 Dimension 2

Tests numériques : positivité

$$\begin{cases} -u'' = f & \text{dans } \Omega =]0, 1[, \\ u = 0 & \text{sur } \partial \Omega. \end{cases}$$

$$f(x) = \pi^2 \sin(\pi x) \ge 0$$
 dans Ω .

Solution analytique

$$u(x) = \sin(\pi x)$$

Dimension 1 Dimension 2

Tests numériques : positivité

Nombre de	Schéma	Schéma
mailles	monotone	non monotone
8	0	5
16	0	4
32	0	2
64	0	2
128	0	3

Table: Comparaison du nombre de composantes négatives des schémas monotone et non-monotone, sur maillage déformé, à l'ordre 3.

Image: A image: A

Dimension 1 Dimension 2

Maillage primal

Figure: Maillage primal

- r et s : sommets,
- *l* : arête du maillage primal, de mesure |*l*|,
- i et j : mailles,
- *g* : point de quadrature de Gauss sur l'arête ℓ,
- x_r : position du sommet r,
- x_j : position du centre de gravité de la maille j,
- x_l : position du centre de l'arête l,
- \triangleright V_j : volume de la maille j.
- n_{il} : normale unitaire à l'arête l, sortante pour la maille i.

< ロ > < 回 > < 回 > < 回 > <</p>

Dimension 1 Dimension 2

Maillage dual

Méthode DDFV (Discrete Duality Finite Volume)¹

Figure: Maillage dual aux sommets

- r et s : mailles
- i,j et ℓ : sommets,
- $\quad \ \ \tilde{\ell}: \ \ \text{arête du maillage dual, de mesure} \\ |\tilde{\ell}|, \ \ \ \ \tilde{\ell}|,$
- ▶ g̃ : point de quadrature des Gauss sur l'arête ℓ̃,
- **x**_r : position du sommet r,
- x_{r̃} : position du centre de gravité de la maille duale r,
- \triangleright V_r : volume de la maille r,
- n_{rl̃} : normale unitaire à l'arête l̃, sortante pour la maille r.

Dimension 1 Dimension 2

Problème

$$\begin{cases} -\Delta u + u = f & \text{ dans } \Omega, \\ u = g & \text{ sur } \partial \Omega, \end{cases}$$

Méthode volumes finis

$$-\sum_{\ell\in\partial i}\int_{\ell}\kappa\nabla u\cdot\mathbf{n}=\int_{i}f.$$

Méthode de quadrature

$$-\sum_{\ell\in\partial i}|\ell|\sum_{g\in\ell}\omega_g\kappa_g\left(\nabla u\right)_g\cdot\mathbf{n}_{i\ell}\approx\int_i f,$$

avec ω_g les poids de la quadrature de Gauss. Calcul des flux

$$\bar{\mathcal{F}}_{\ell} = -\sum_{g \in \ell} \omega_g \kappa_g \left(\nabla u \right)_g \cdot \mathbf{n}_{i\ell}.$$

Dimension 1 Dimension 2

Calcul des flux

Développements de Taylor à l'ordre k au voisinage de x_g

$$\begin{split} u_{j} &= u(\mathbf{x}_{g}) + (\mathbf{x}_{j} - \mathbf{x}_{g}) \cdot \nabla u(\mathbf{x}_{g}) \\ &+ \sum_{p=2}^{k} \frac{1}{V_{j} p!} \sum_{m=0}^{p} {p \choose p-m} \frac{\partial^{p} u}{\partial x^{m} \partial y^{(p-m)}} (\mathbf{x}_{g}) \int_{j} (x - x_{g})^{m} (y - y_{g})^{(p-m)} + \mathcal{O} \left(h^{k+1} \right), \\ u_{i} &= u(\mathbf{x}_{g}) + (\mathbf{x}_{i} - \mathbf{x}_{g}) \cdot \nabla u(\mathbf{x}_{g}) \\ &+ \sum_{p=2}^{k} \frac{1}{V_{i} p!} \sum_{m=0}^{p} {p \choose p-m} \frac{\partial^{p} u}{\partial x^{m} \partial y^{(p-m)}} (\mathbf{x}_{g}) \int_{i} (x - x_{g})^{m} (y - y_{g})^{(p-m)} + \mathcal{O} \left(h^{k+1} \right). \end{split}$$

On soustrait :

$$(\mathbf{x}_j - \mathbf{x}_i) \cdot \nabla u(\mathbf{x}_g) = u_j - u_i + \mathbf{r}_{ij},$$

$$r_{ij} = -\sum_{\rho=2}^{k} \frac{1}{\rho!} \sum_{m=0}^{\rho} {\rho \choose p-m} \frac{\partial^{\rho} u(x_{g})}{\partial x^{m} \partial y^{(\rho-m)}} \left(\frac{1}{V_{j}} \int_{j}^{(X-X_{g})^{m}} (y-y_{g})^{(\rho-m)} - \frac{1}{V_{i}} \int_{i}^{(X-X_{g})^{m}} (y-y_{g})^{(\rho-m)} \right) + \mathcal{O}\left(h^{k+1}\right).$$

▲日▼▲□▼▲田▼▲田▼▲日▼

Dimension 1 Dimension 2

Calcul des flux

Même méthode sur les mailles duales

$$(\mathbf{x}_s - \mathbf{x}_r) \cdot \nabla u(\mathbf{x}_g) = u_s - u_r + r_{rs},$$

$$r_{n} = -\sum_{p=2}^{k} \frac{1}{p!} \sum_{m=0}^{p} {p \choose p-m} \frac{\partial^{p} u(x_{g})}{\partial x^{m} \partial y^{(p-m)}} \left(\frac{1}{V_{s}} \int_{z}^{(x-x_{g})^{m} (y-y_{g})^{(p-m)}} - \frac{1}{V_{r}} \int_{r}^{(x-x_{g})^{m} (y-y_{g})^{(p-m)}} \right) + \mathcal{O}\left(h^{k+1}\right).$$

Système d'inconnue $\nabla u(\mathbf{x}_g)$

$$\begin{cases} \nabla u(\mathbf{x}_g) \cdot (\mathbf{x}_j - \mathbf{x}_i) = u_j - u_i + \overline{r}_{ij}, \\ \nabla u(\mathbf{x}_g) \cdot (\mathbf{x}_s - \mathbf{x}_r) = u_s - u_r + \overline{r}_{rs}. \end{cases}$$

Décomposition de la normale $n_{\it i\ell}$ dans la base $((x_{\it j}-x_{\it i}),(x_{\it s}-x_{\it r}))$

$$\mathbf{n}_{i\ell} = \alpha_{i\ell}(\mathbf{x}_j - \mathbf{x}_i) + \beta_{i\ell}(\mathbf{x}_s - \mathbf{x}_r),$$

avec $\alpha_{i\ell} \geq 0$.

$$(\nabla u)_g \cdot \mathbf{n}_{i\ell} = \alpha_{i\ell} \left(u_j - u_i + r_{ij}(\mathbf{u}) \right) + \beta_{i\ell} \left(u_s - u_r + r_{rs}(\mathbf{u}) \right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Dimension 1 Dimension 2

Calcul des flux

Inconnues mailles-sommets :
$$\mathbf{u} = \begin{pmatrix} \mathbf{u}^{\mathcal{J}} \\ \mathbf{u}^{\mathcal{R}} \end{pmatrix}$$
.

Flux numérique :

$$\mathcal{F}_{\ell}(\mathbf{u}) = -|\ell| \sum_{g \in \ell} \omega_g \kappa_g \left(\alpha_{i\ell} \left(u_j - u_i + r_{ij}(\mathbf{u}) \right) + \beta_{i\ell} \left(u_s - u_r + r_{rs}(\mathbf{u}) \right) \right),$$

Autrement dit

$$\mathcal{F}_{\ell}(\mathbf{u}) = -\gamma_{\ell}(u_j - u_i) + r_{\ell}(\mathbf{u}),$$

avec

$$\begin{cases} r_{\ell}(\mathbf{u}) = |\ell| \sum_{g \in \ell} \omega_{g} \kappa_{g} \left(\alpha_{i\ell} r_{ij}(\mathbf{u}) + \beta_{i\ell} (u_{s} - u_{r} + r_{rs}(\mathbf{u})) \right), \\ \gamma_{\ell} = \left(\alpha_{i\ell} |\ell| \sum_{g \in \ell} \omega_{g} \kappa_{g} \right) \geq 0. \end{cases}$$

Dimension 1 Dimension 2

Tests numériques

$$\begin{cases} -\Delta u = f & \text{dans } \Omega =]0, 1[\times]0, 1[, \\ u = 0 & \text{sur } \partial \Omega. \end{cases}$$

$$f(x,y) = 2\pi^2 \sin(\pi x) \sin(\pi y) \ge 0.$$

Solution analytique

$$u(x,y)=\sin(\pi x)\sin(\pi y),$$

u(x) -----

<ロ> <同> <同> < 回> < 回>

臣

Conclusion : schéma volumes finis sur maillage déformé :

- conservatif
- positif
- consistant (ordre élevé).

Perspectives :

- Ordre élevé en 2D.
- Inconnue tensorielle.
- Discrétisation en temps.